References
1
Lazell M.
O’Brien P.
Otway DJ.
Park JH.
J. Chem. Soc., Dalton Trans.
2000,
4479
2a
Barros OSD.
Lang ES.
de Oliveira CAF.
Peppe C.
Zeni G.
Tetrahedron Lett.
2002,
43:
7921
2b
Barros OSD.
Lang ES.
Peppe C.
Zeni G.
Synlett
2003,
1725
3
Barros OSD.
de Carvalho AB.
Lang ES.
Peppe C.
Lett. Org. Chem.
2004,
1:
43
4a
Ranu BC.
Mandal T.
J. Org. Chem.
2004,
69:
5793
4b
Ranu BC.
Mandal T.
Samanta S.
Org. Lett.
2003,
5:
1439
5 [Br2InOH(bipy)]2·4THF was prepared by stirring equimolar quantities of InBr and PhSeBr (1 mmol) in 20 mL of dry THF (Na/benzophenone), in a three-neck round-bottom flask, equipped with an addition funnel charged with 1 mmol of 2,2′-dipyridyl (bipy) dissolved in 5 mL of THF. As soon as the solid InBr dissolved giving a pale yellow solution, the stirring was interrupted and the bipy solution added dropwise. After addition of the bipy, H2O (5 mmol) was added, and the flask opened to the lab atmosphere and monitored for precipitation of colorless crystals. As soon as these crystals start to deposit in the vessel, any solid impurities were filtered and the crystals allowed to grow. This treatment leaded to the deposition of [Br2InOH(bipy)]2·4THF (42 mg, 0.05 mmol, 10%) after 24 h at r.t. These crystals become an amorphous powder, upon drying. Analysis of the powder revealed loss of THF. Anal. Calcd for [Br2InOH(bipy)]2·2THF (%): Br, 30.8; In, 22.1. Found (%): Br, 30.7; In, 21.9. After removal of [Br2InOH(bipy)]2·4THF, the THF solution was transferred to a separation funnel and partitioned in H2O-CH2Cl2. The CH2Cl2 solution was pumped to dryness and the residue was purified by column chromatography in silica/hexane to give PhSeSePh (47 mg, 0.15 mmol, 30%) melting at 60 °C (lit.
[17]
63 °C).
6 Electronic Supplementary Information available: crystallographic data for the compound [Br2InOH(bipy)]2·4THF: CCDC No 279659.
7 The Markovnikov hydroselenation of the alkynes involved the following steps: aqueous EtOH (95%, 2 mL) was deoxygenated by refluxing it, under N2 atmosphere, for 2 h in a Schlenk tube. After cooling to r.t., the tube was charged with PhSeSePh (314 mg, 1 mmol) and InBr (195 mg, 1 mmol). Continuous stirring led to the dissolution of the red solid InBr after 15-30 min. At this point, the alkyne (1 mmol) was added via syringe, and the reaction monitored by TLC. After 3 h, the reaction was quenched with H2O and the organics extracted with CH2Cl2 (2 × 10 mL). The extract was dried (Na2SO4) and evaporated to dryness under vacuo. The oily residue was purified by columnn chromatography (silica gel/hexane) to produce the vinylic selenides 2; yields are given in Scheme
[3]
. Spectroscopic Data for Compounds 2a-c are as follow:
2-Phenylselenohex-1-ene (2a) [63831-76-5]:
[9]
yield 70%; colorless oil. 1H NMR (CDCl3): δ = 7.50 (m, 2 H), 7.22 (m, 3 H), 5.43 (s, 1 H), 5.08 (s, 1 H), 2.25 (t, J = 7.4 Hz, 2 H), 1.47 (quint., J = 7.3 Hz, 2 H), 1.27 (sext., J = 7.4 Hz, 2 H), 0.85 (t, J = 7.3 Hz, 3 H). 13C NMR and DEPT-135 (CDCl3): δ = 143.44 (C
quat.
), 134.66 (C
ar
-H), 129.11 (C
ar
-H), 129.06 (C
quat.
), 127.63 (C
ar
-H), 116.05 (=CH2), 38.01 (CH2), 30.82 (CH2), 21.88 (CH2), 13.79 (CH3).
2-Phenylseleno-hept-1-ene (2b) [211189-33-2]:
[18]
yield 80%; colorless oil. 1H NMR (CDCl3): δ = 7.47 (m, 2 H), 7.22 (m, 3 H), 5.41 (s, 1 H), 5.03 (s, 1 H), 2.20 (t, J = 7.3 Hz, 2 H), 1.46 (quint., J = 7.3 Hz, 2 H), 1.20 (m, 4 H), 0.80 (t, J = 7.1 Hz, 3 H). 13C NMR (CDCl3): δ = 143.52, 134.68, 129.13, 129.09, 127.67, 116.13, 38.31, 31.01, 28.37, 22.39, 14.00.
2-Phenylselenodec-1-ene (2c): colorless oil. 1H NMR (CDCl3): δ = 7.48 (m, 2 H), 7.22 (m, 3 H), 5.43 (s, 1 H), 5.04 (s, 1 H), 2.21 (t, J = 7.3 Hz, 2 H), 1.47 (quint., J = 7.3 Hz, 2 H), 1.20 (s, 10 H), 0.82 (t, J = 6.8 Hz, 3 H). 13C NMR and DEPT-135 (CDCl3): δ = 143.50 (C
quat.
), 134.67 (C
ar
-H), 129.13 (C
ar
-H), 129.04 (C
quat.
), 127.65 (C
ar
-H), 116.07 (=CH2), 38.32 (CH2), 31.83 (CH2), 29.32 (CH2), 29.19 (CH2), 28.81 (CH2), 28.67 (CH2), 22.64 (CH2), 14.09 (CH3).
8 Compounds 2′a were prepared as a 2:3 mixture of stereoisomers (Z:E) following the same experimental conditions described above,
[7]
except the reaction time, which in this case was 48 h.
(Z,E)-2-Phenylselenohex-2-ene (2′a):
[9]
colorless oil. 1H NMR (CDCl3): δ = 7.40 (m, 2 H), 7.19 (m, 3 H), 5.91 (t, J = 7.4 Hz, 0.4 H), 5.74 (t, J = 7.0 Hz, 0.6 H), 2.19 (q, J = 7.3 Hz, 1.2 H), 2.04 (q, J = 7.3 Hz, 0.8 H), 1.95 (s, 3 H), 1.38 (sext, J = 7.4 Hz, 2 H), 0.88 (t, J = 7.3 Hz, 1.8 H), 0.87 (t, J = 7.3 Hz, 1.2 H). 13C NMR and DEPT-135 (CDCl3): δ = 137.46 (C-H), 134.67 (C-H), 133.08 (C-H), 132.55 (C-H), 130.56 (C
quat
), 129.75 (C
quat
), 128.99 (C-H), 128.91 (C-H), 127.43 (C
quat
), 126.80 (C-H), 126.77 (C-H), 125.69 (C
quat.
), 33.90 (CH2), 31.54 (CH2), 26.47 (CH3), 22.58 (CH2), 22.40 (CH2), 19.98 (CH2), 13.78 (CH3), 13.70 (CH3). MS (70 eV, EI, for 80Se): m/z (unassigned Z,E-isomers, %): 240 (24, 40) [M], 157 (17, 10), 130 (9, 64), 116 (100, 4), 55 (87, 100).
9 The isomerization 2a → 2′a was detected before in CDCl3 solutions. As in our case, Beletskaya and co-workers found a 2:3 (Z:E) mixture of isomers: Ananikov VP.
Malyshev DA.
Beletskaya IP.
Aleksandrov GG.
Eremenko I.
J. Organomet. Chem.
2003,
679:
162
10 Heptan-2-one (3b) [110-43-0]:
[19]
colorless liquid. 1H NMR (CDCl3): δ = 2.39 (t, J = 7.5 Hz, 2 H), 2.10 (s, 3 H), 1.54 (quint., J = 7.3 Hz, 2 H), 1.26 (m, 4 H), 0.86 (t, J = 6.8 Hz, 3 H). 13C NMR (CDCl3): δ = 209.16, 43.66, 31.27, 29.71, 23.47, 22.34, 13.82.
Decan-2-one (3c) [693-54-9]:
[20]
colorless liquid. 1H NMR (CDCl3): δ = 2.35 (t, J = 7.4 Hz, 2 H), 2.06 (s, 3 H), 1.50 (quint., J = 7.2 Hz, 2 H), 1.21 (br s, 10 H), 0.81 (t, J = 7.2 Hz, 3 H). 13C NMR and DEPT-135 (CDCl3): δ = 208.94 (C=O), 43.62 (CH2), 31.68 (CH2), 29.60 (CH3), 29.22 (CH2), 29.04 (CH2), 28.99 (CH2), 23.73 (CH2), 22.49 (CH2), 13.89 (CH3). MS (70 eV, EI): m/z (%) = 156 (2) [M], 138 (10), 113 (10), 99 (82), 71 (100).
5-Phenylselenopentan-2-one (6) [66241-86-9]:
[2a]
[21]
1H NMR (CDCl3): δ = 7.41 (m, 2 H), 7.18 (m, 3 H), 2.83 (t, J = 7.1 Hz, 2 H), 2.49 (t, J = 7.1 Hz, 2 H), 2.01 (s, 3 H), 1.87 (quint., J = 7.0 Hz, 2 H). 13C NMR (CDCl3): δ = 207.74, 132.44, 129.84, 128.94, 126.73, 42.82, 29.80, 27.00, 23.84.
11 Nonan-2,8-dione (5a) [30502-73-9]:
[22]
yield 70%; colorless liquid. 1H NMR (CDCl3): δ = 2.36 (t, J = 7.3 Hz, 4 H), 2.06 (s, 6 H), 1.51 (quint., J = 7.5 Hz, 4 H), 1.21 (quint., J = 6.8 Hz, 2 H). 13C NMR (CDCl3): δ = 208.97, 43.34, 29.85, 28.49, 23.37. MS (70 eV, EI): m/z (%) = 138 (10), 99 (61), 71 (100).
Decan-2,9-dione (5b) [16538-91-3]:
[23]
yield 92%; colorless solid; mp 52-53 °C. 1H NMR (CDCl3): δ = 2.35 (t, J = 7.4 Hz, 4 H), 2.06 (s, 6 H), 1.50 (quint., J = 6.8 Hz, 4 H), 1.20 (t, J = 7.3 Hz, 4 H). 13C NMR (CDCl3): δ = 209.01, 43.57, 29.78, 28.86, 23.56. MS (70 eV, EI): m/z (%) = 170 (1) [M], 152 (19), 128 (13), 113 (47), 58 (100).
Tetradecan-2,13-dione (5c) [7029-11-0]:
[22]
yield 90%; colorless solid; mp 74 °C. 1H NMR (CDCl3): δ = 2.34 (t, J = 7.5 Hz, 4 H), 2.07 (s, 6 H), 1.49 (quint., J = 7.3 Hz, 4 H), 1.19 (br s, 12 H). 13C NMR (CDCl3): δ = 209.25, 43.79, 29.80, 29.36, 29.33, 29.14, 23.86. MS (70 eV, EI):
m/z (%) = 211 (2), 169 (8), 58 (100).
12a For hydration of alkynes catalyzed by mercury salts, see: Budde WL.
Dessy RE.
J. Am. Chem. Soc.
1963,
85:
3964
12b For hydration of alkynes catalyzed by transition metals, see: Lucey DW.
Atwood JD.
Organometallics
2002,
21:
2481 ; and references therein
13
Ogawa A.
Yokoyama H.
Yokoyama K.
Masawaki T.
Kambe N.
Sonoda N.
J. Org. Chem.
1991,
56:
5721
14a
Masawaki T.
Uchida Y.
Ogawa A.
Kambe N.
Miyoshi N.
Sonoda N.
J. Phys. Org. Chem.
1988,
1:
115
14b
Masawaki T.
Ogawa A.
Kambe N.
Murai S.
Sonoda N.
J. Phys. Org. Chem.
1988,
1:
119
15 (E)-1-Phenyl-1,2-phenylselenoethene [132330-37-1]:
[13]
1H NMR (CDCl3): δ = 7.09-7.52 (m, 15 H), 7.02 (s, 1 H). 13C NMR and DEPT-135 (CDCl3): δ = 139.51 (C
quat.
), 133.01 (CH), 132.08 (CH), 131.13 (C
quat.
), 130.62 (C
quat.
), 130.44 (C
quat.
), 129.24 (CH), 129.15 (CH), 128.59 (CH), 128.28 (CH), 128.24 (CH), 127.43 (CH), 127.40 (CH), 126.04 (CH). MS (70 eV, EI for 80Se): m/z (%) = 416 (42) [M], 259 (56), 178 (100), 157 (71). We were not able to obtain a pure sample of the minoritary Z-isomer for NMR studies; nevertheless GC-MS analysis, 416 [M], is consistent with the proposed structure.
16
Kuniyasu H.
Ogawa A.
Sato K.-I.
Ryu I.
Sonoda N.
Tetrahedron Lett.
1992,
33:
5525
17
Sharpless KB.
Lauer RF.
J. Am. Chem. Soc.
1973,
95:
2697
18
Ogawa A.
Kudo A.
Hirao T.
Tetrahedron Lett.
1998,
39:
5213 ; report the preparation of this compound, but do not describe spectroscopic data.
19
Casado R.
Contel M.
Laguna M.
Romero P.
Sanz S.
J. Am. Chem. Soc.
2003,
125:
11925
20
Ragagnin G.
Betzemeier B.
Quici S.
Knochel P.
Tetrahedron
2002,
58:
3985
21
Liotta D.
Sunay U.
Santiesteban H.
Markiewicz W.
J. Org. Chem.
1981,
46:
2605
22a
Nishinaga A.
Rindo K.
Matsuura T.
Synthesis
1986,
1038
22b
Zahalka HA.
Januszkiewicz K.
Alper H.
J. Mol. Catal.
1986,
35:
249
23
Satoh T.
Taguchi D.
Suzuki C.
Fujisawa S.
Tetrahedron
2001,
57:
493