References and Notes
For some reviews see:
1a
Pihko PM.
Angew. Chem. Int. Ed.
2004,
43:
2062
1b
Schreiner PR.
Chem. Soc. Rev.
2003,
32:
289
1c
Dalko PI.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5138
For selected examples of recent papers, see:
1d
Herrera RP.
Sgarzani V.
Bernardi L.
Ricci A.
Angew. Chem. Int. Ed.
2005,
44:
6576
1e
Dixon DJ.
Tillmann AL.
Synlett
2005,
2635
1f
Zhuang W.
Poulsen TB.
Jørgensen KA.
Org. Biomol. Chem.
2005,
3:
3284
1g
Zhuang W.
Hazell RG.
Jørgensen KA.
Org. Biomol. Chem.
2005,
3:
2566
1h
Unni AK.
Takenaka N.
Yamamoto H.
Rawal VH.
J. Am. Chem. Soc.
2005,
127:
1336
1i
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2005,
127:
1080
1j
Yoon TP.
Jacobsen EN.
Angew. Chem. Int. Ed.
2005,
44:
466
1k
Okino T.
Nakamura S.
Furukawa T.
Takemoto Y.
Org. Lett.
2004,
6:
625
l
Uraguchi D.
Terada M.
J. Am. Chem. Soc.
2004,
126:
5356
1m
Akiyama T.
Itoh J.
Yokota K.
Fuchibe K.
Angew. Chem. Int. Ed.
2004,
43:
1566
1n
Nugent BM.
Yoder RA.
Johnston JN.
J. Am. Chem. Soc.
2004,
126:
3418
1o
McDougal NT.
Schaus SE.
J. Am. Chem. Soc.
2003,
125:
12094
1p
Braddock DC.
MacGilp ID.
Perry BG.
Synlett
2003,
1121
1q
Schuster T.
Bauch M.
Dürner G.
Göbel MW.
Org. Lett.
2000,
2:
179
2
Stork G.
Brizzolara A.
Landesman H.
Szmuszkovicz J.
Terrell R.
J. Am. Chem. Soc.
1963,
85:
207
3a
Seebach D.
Golinski J.
Helv. Chim. Acta
1981,
64:
1413
3b
Blarar SJ.
Schweizer WB.
Seebach D.
Helv. Chim. Acta
1982,
65:
1637
3c
Blarer SJ.
Seebach D.
Chem. Ber.
1983,
116:
3086
For an excellent review on asymmetric Michael additions to nitroalkenes, see:
Berner OM.
Tedeschi L.
Enders D.
Eur. J. Org. Chem.
2002,
1877 and references cited therein
4a
Wang W.
Wang J.
Li H.
Angew. Chem. Int. Ed.
2005,
44:
1369
4b
Cobb AJA.
Longbottom DA.
Shaw DM.
Ley SV.
Chem. Commun.
2004,
1808
4c
Ishii T.
Fujioka S.
Sekiguchi Y.
Kotsuki H.
J. Am. Chem. Soc.
2004,
126:
9558
4d
Kotrusz P.
Toma S.
Schmalz H.-G.
Adler A.
Eur. J. Org. Chem.
2004,
1577
4e
Alexakis A.
Andrey O.
Org. Lett.
2002,
4:
3611
4f
Enders D.
Seki A.
Synlett
2002,
26
4g
Betancort JM.
Barbas CF.
Org. Lett.
2001,
3:
3737
4h
List B.
Pojarliev P.
Martin HJ.
Org. Lett.
2001,
3:
2423
4i
Betancort JM.
Sakthivel K.
Thayumanavan R.
Barbas CF.
Tetrahedron Lett.
2001,
42:
4441
5
Betancort JM.
Sakthivel K.
Thayumanavan R.
Tanaka F.
Barbas CF.
Synthesis
2004,
1509
6
Fleming I.
Karger MH.
J. Chem. Soc. C
1967,
226
7
Vachal P.
Jacobsen EN.
J. Am. Chem. Soc.
2002,
124:
10012
8
Huang Y.
Unni AK.
Thadani AN.
Rawal VH.
Nature (London)
2003,
424:
146
9a Chiral HPLC analysis was performed on Daicel Chirapak AD or AS columns (25 cm × 0.46 cm diameter). The absolute configurations of 8 and 16ad were determined by optical rotation {8: [α]578
23 +21.5 (57% ee, c 1.1, CH2Cl2); lit.
[9b]
: S-enantiomer [α]578
20 -19.2 (55% ee, c 1.2, CH2Cl2). Compound 16ad: [α]D
25 +7.44 (54% ee, c 0.44, CHCl3); lit.
[9c]
: R-enantiomer [α]D
25 +20.71 (86% ee, c 1.79, CHCl3).
9b
Botteghi C.
Paganelli S.
Schinonato A.
Boga C.
Fava AJ.
J. Mol. Catal.
1991,
66:
7
9c
Seebach D.
Lyapkalo IM.
Dahinden R.
Helv. Chim. Acta
1999,
82:
1829
9d The order of the peaks in the chromotogram of 8 was consistent with those previously reported: Funabashi K.
Saida Y.
Kanai M.
Arai T.
Sasai H.
Shibasaki M.
Tetrahedron Lett.
1998,
39:
7557
9e All other adducts 16 have no previously reported optical rotation and the absolute stereochemistry was assumed to be the same as that for 8 and 16ad since the order of the major and minor peaks in the chiral stationary phase HPLC chromatogram and the sign of the optical rotation were the same in all cases.
10a
Wenzel AG.
Jacobsen EN.
J. Am. Chem. Soc.
2002,
124:
12964
10b
Okino T.
Hoashi Y.
Takemoto Y.
J. Am. Chem. Soc.
2003,
125:
12672
11
Kaik M.
Gawronski J.
Tetrahedron: Asymmetry
2003,
14:
1559
12
General Method for Conjugate Addition Reactions.
A solution of enamine 14 (2.25 mmol, 3 equiv) and 13a (55 mg, 0.075 mmol, 0.1 equiv) in toluene (3 mL) at -50 °C was added to the nitroalkene 15 (0.75 mmol, 1 equiv) at -50 °C and the resulting solution stirred at this temperature for 65 h. The reaction mixture was poured rapidly into dilute HCl (5 mL, 3.0 mol dm-3), stirred at r.t. for 10 min and extracted with CH2Cl2 (2 × 3 mL). The combined organic extracts were dried (MgSO4), filtered, concentrated under reduced pressure and the residue was purified by flash column chromatography (15:85 EtOAc-hexanes). Spectroscopic data for 8: white powder; mp 73-75 °C; [α]D
25 +7.34 (57% ee, c 1.24, CHCl3); [α]578
23 +21.5 (57% ee, c 1.1, CH2Cl2). IR: νmax = 2988, 2901, 1687, 1541, 1378 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.95 (2 H, d, J = 8.0 Hz), 7.59 (1 H, t, J = 8.0 Hz), 7.47 (2 H, t, J = 8.0 Hz), 7.37-7.27 (5 H, m, Ph), 4.85 (1 H, dd, J = 12.5, 6.5 Hz), 4.70 (1 H, dd, J = 12.5, 7.0 Hz), 4.26 (1 H, qn, J = 6.5 Hz), 3.50 (1 H, dd, J = 17.5, 6.5 Hz), 3.44 (1 H, dd, J = 17.5, 7.0 Hz); all data are consistent with those previously reported. See: Kim DY.
Huh SC.
Tetrahedron
2001,
57:
8933
13
Müller P.
Allenbach YF.
Bernardinelli G.
Helv. Chim. Acta
2003,
86:
3164
14
Ballini R.
Bosica G.
Fiorini D.
Palmieri A.
Petrini M.
Chem. Rev.
2005,
105:
933
15
Johnson K.
Degering EF.
J. Org. Chem.
1943,
8. 10
16a
Nose A.
Kudo T.
Chem. Pharm. Bull.
1989,
37:
816
16b
Osby JO.
Ganem B.
Tetrahedron Lett.
1985,
26:
6413
17
Synthesis of 13a.
A solution of (R,R)-(1,2)-diaminocyclohexane (9.5 g, 83 mmol, 1.5 equiv), tetraphenylphthalic anhydride (25 g, 55.2 mmol, 1.0 equiv) and (±)-camphorsulfonic acid (15.4 g, 66.2 mmol, 1.2 equiv) in xylene (750 mL) was refluxed for 16 h. The reaction mixture was allowed to cool to r.t. and the solvent was removed under reduced pressure. The residue was slurried in aq KOH solution (400 mL, 1 mol dm-3) and extracted with CH2Cl2 (3 × 200 mL). The combined organic extracts were dried (K2CO3), filtered and concentrated under reduced pressure. The residue was re-dissolved in THF (500 mL) and 4-nitrophenyl isothiocyanate (29 g, 166 mmol, 3 equiv) was added in three portions at room temperature. The reaction mixture was stirred at r.t. for 18 h, concentrated under reduced pressure and purified by flash column chromatography (20:80 to 100:0 EtOAc-hexane) to give a viscous yellow oil that was re-dissolved in minimal Et2O. Addition of pentane gave the thiourea 13a (8.0 g, 11.0 mmol, 20%) as a yellow powder; mp 150-151 °C; [α]D
25 -61.1
(c 3.43, CHCl3). IR: νmax = 3329, 2988, 2910, 1766, 1703, 1596, 1522, 1371, 1329 cm-1. 1H NMR (500 MHz,
d
6-DMSO, 353 K): δ = 9.77 (1 H, br s), 8.11 (2 H, d, J = 9.0 Hz), 7.81 (1 H, br d, J = 7.5 Hz), 7.68 (2 H, d, J = 9.0 Hz), 7.16-7.02 (10 H, m), 6.85-6.63 (10 H, m), 4.85 (1 H, m), 3.95 (1 H, td, J = 12.0, 3.5 Hz), 2.31 (1 H, br q, J = 9.5 Hz), 2.13-2.05 (1 H, m), 1.79-1.74 (3 H, m), 1.32-1.28 (3 H, m). 13C NMR (125 MHz, d
6-DMSO, 353 K): δ = 180.5, 167.0, 147.8, 142.7, 138.9, 138.4, 136.2, 131.0, 130.3, 128.1, 127.29, 127.27, 127.2, 127.1, 126.5, 124.6, 121.1, 54.4, 54.3, 32.1, 28.8, 25.4, 24.8. ESI-MS [ESI - H+]: m/z calcd for C45H37N4O4S+: 729.2530; found: 729.2531.