Subscribe to RSS
DOI: 10.1055/s-2005-922784
Efficient Parallel Resolution of Racemic Evans’ Oxazolidinones Using quasi-Enantiomeric Profens
Publication History
Publication Date:
16 December 2005 (online)
![](https://www.thieme-connect.de/media/synlett/200601/lookinside/thumbnails/10.1055-s-2005-922784-1.jpg)
Abstract
Racemic Evans’ oxazolidinones were efficiently resolved using a combination of quasi-enantiomeric profens. The levels of stereocontrol were high, giving products with predictable configurations.
Key words
chiral auxiliaries - chiral resolution - kinetic resolution - molecular recognition - stereoselectivity
-
2a
Eames J. Angew. Chem. Int. Ed. 2000, 39: 885 ; and references therein -
2b
Dehli J.Gotor V. Chem. Soc. Rev. 2002, 31: 365 -
2c
Vedejs E.Jure M. Angew. Chem. Int. Ed. 2005, 44: 3974 -
2d For a review into the separation of enantiomers, see:
Fogassy E.Nogradi M.Palovicsc E.Schindlerc J. Synthesis 2005, 20: 1555 -
3a
Brandt J.Jochum C.Ugi I.Jochum P. Tetrahedron 1997, 33: 1353 -
3b
Vedejs E.Rozners E. J. Am. Chem. Soc. 2001, 123: 2428 -
3c
Vedejs E.Daugulis O.Mackay JA.Rozners E. Synlett 2001, 1499 -
3d
Davies SG.Garner AC.Long MJC.Smith AD.Sweet MJ.Withey JM. Org. Biomol. Chem. 2004, 2: 3355 -
3e
Zhang QS.Curran DP. Chem.-Eur. J. 2005, 4866 - 4
Liao L.Zhang F.Dmitrenko O.Bach RD.Fox JM. J. Am. Chem. Soc. 2004, 126: 4490 - 5
Vedejs E.Chen X. J. Am. Chem. Soc. 1997, 119: 2584 - 6
Davies SG.Diez D.El Hammouni MM.Garner AC.Garrido NM.Long MJC.Morrison RM.Smith AD.Sweet MJ.Withey JM. Chem. Commun. 2003, 2410 - 7
Coumbarides GS.Dingjan M.Eames J.Flinn A.Northen J.Yohannes Y. Tetrahedron Lett. 2005, 46: 2897 -
8a
Coumbarides GS.Eames J.Flinn A.Northen J.Yohannes Y. Tetrahedron Lett. 2005, 46: 849 ; and references therein -
8b
Yohannes Y. PhD Thesis University of London; UK: 2004. -
8c
Fukuzawa S.-I.Chino Y.Yokoyama T. Tetrahedron: Asymmetry 2002, 13: 1645
References and Notes
New address: Department of Chemistry, University of Hull, Kingston upon Hull, HU6 7RX, UK.
9
Experimental Section: Representative Procedure for the Parallel Kinetic Resolution of Oxazolidinone (
rac
)-1 Using quasi
-Enantiomeric Profen Esters (
S
)-17 and (
R
)-25.
n-BuLi (0.61 mL, 2.5 M in hexane, 1.52 mmol) was added to a stirred solution of oxazolidinone (rac)-1 (0.18 g, 1.08 mmol) in THF (2 mL) at -78 °C. After stirring for 1 h, a solution of active esters (S)-17 (0.22 g, 0.55 mmol) and (R)-25 (0.20 g, 0.55 mmol) in THF (2 mL) were slowly added. The resulting solution was stirred for a further 2 h at -78 °C. The reaction was quenched with H2O (10 mL) and extracted with Et2O (2 × 20 mL). The combined organic layers were dried (over MgSO4) and evaporated under reduced pressure. The residue was purified by flash column chromatography eluting with light PE (40-60 °C)-Et2O (1:1) to give oxazolidinone syn-21 (101 mg, 49%) as a white solid and oxazolidinone syn-26 (99 mg, 52%) as a white solid.
Oxazolidinone syn-21: mp 168-170 °C; R
f
= 0.19 [light PE (40-60 °C)-Et2O (1:1)]; [α]D
24 +166.2 (c 1.5, CHCl3). IR (CHCl3): νmax = 1780 and 1706 (CO), 1632, 1605 and 1500 (Ar) cm-1. 1H NMR (270 MHz, CDCl3): δ = 7.64 (1 H, d, J = 7.7 Hz, CH, Ar), 7.52 (1 H, d, J = 7.7 Hz, CH, Ar), 7.35 (1 H, br s, CH, Ar), 7.30-7.05 (5 H, m, 6 × CH, Ar and Ph), 6.88 (2 H, d, J = 7.7 Hz, 2 × CH, Ar), 5.46 (1 H, dd, J = 9.2, 5.2 Hz, CHN), 5.20 (1 H, q, J = 6.9 Hz, CHCO), 4.63 (1 H, t, J = 8.9 Hz, CH
AHBO), 4.05 (1 H, dd J = 8.9, 5.2 Hz, CHA
H
BO), 3.92 (3 H, s, CH
3, CH
3O), 1.44 (3 H, d, J = 6.9 Hz, CH
3CH). 13C NMR (100.6 MHz, CDCl3): δ = 173.3 (C=O), 157.7 (C=O), 153.1 (i-COCH3, Ar), 138.2 (i-C, Ar), 135.2 (i-C, Ar), 133.7, 129.4, 128.9, 128.5, 127.4, 127.1, 126.4, 126.0, 118.8 and 105.5 (10 × C, Ar and Ph), 69.6 (CHN), 57.9 (CH2O), 55.3 (CH3O), 43.9 (CHCO), 18.8 (CH3). MS: m/z calcd for C23H22NO4: 376.1549; found: 376.1553 [MH+].
Oxazolidinone syn-26: mp 97-99 °C; R
f
= 0.47 [light PE (40-60 °C)-Et2O (1:1)]; [α]D
24 -99.1 (c 0.4, CHCl3). IR (CHCl3): νmax = 1779 and 1705 (CO), 1514 (Ar) cm-1. 1H NMR (270 MHz, CDCl3): δ = 7.28-7.15 (3 H, m, 3 × CH, Ph), 7.0 (4 H, s, 4 × CH, Ar), 6.90 (2 H, d, J = 7.9 Hz, 2 × CH, Ph), 5.44 (1 H, dd, J = 9.2, 5.2 Hz, CHN), 5.09 (1 H, q, J = 6.9 Hz, CHCO), 4.63 (1 H, t, J = 9.2 Hz, CH
AHBO), 4.06 (1 H, dd, J = 8.9, 5.2 Hz, CHA
H
BO), 2.43 (2 H, d, J = 7.4 Hz, CH
2CHCH3), 1.89-1.79 [1 H, m, CH(CH3)2], 1.38 (3 H, d, J = 6.9 Hz, CH
3CHCO), 0.90 [6 H, d, J = 6.7 Hz, 2 × CH3, (CH
3)2CH)]. 13C NMR (100.6 MHz, CDCl3): δ = 174.3 (C=O), 153.3 (C=O), 140.7, 139.4 and 137.4 (3 × i-C, Ar and Ph), 129.3, 129.2, 128.7, 127.9, 125.8 (5 × CH, Ar and Ph), 69.7 (NCH), 58.1 (CH2O), 45.1 (CHCO), 42.7 (CH2Ar), 30.2 [CH(CH3)2], 22.4 [CH(CH3)2], 19.4 [CH3CH]. MS: m/z calcd for C22H26NO3: 352.1913; found: 352.1909 [MH+].).