Plant Biol (Stuttg) 2006; 8(4): 450-461
DOI: 10.1055/s-2006-923951
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Development of NaCl-Tolerant Strain in Chrysanthemum morifolium Ramat. through in vitro Mutagenesis

Z. Hossain1 , 3 , A. K. A. Mandal1 , S. K. Datta1 , A. K. Biswas2
  • 1Botanic Garden and Floriculture Division, National Botanical Research Institute, Rana Pratap Marg, Lucknow - 226001, Uttar Pradesh, India
  • 2Cytogenetics and Plant Breeding Laboratory, Botany Department, University of Kalyani, Kalyani - 741235, Nadia, West Bengal, India
  • 3Present address: Botany Department, Rishi Bankim Chandra College, Naihati, 24-Parganas (N)-743165, West Bengal, India
Further Information

Publication History

Received: August 27, 2005

Accepted: January 17, 2006

Publication Date:
11 May 2006 (online)

Abstract

One NaCl-tolerant chrysanthemum (Chrysanthemum morifolium Ramat.) variant (E2) has been developed in a stable form through in vitro mutagenesis using ethylmethane sulfonate (EMS) as the chemical mutagen. Salt tolerance was evaluated by the capacity of the plant to maintain both flower quality and yield under stress conditions. Enhanced tolerance of the E2 variant has been attributed to the increased activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), and dehydroascorbate reductase (DHAR), and, to a lesser extent of membrane damage than NaCl-treated control plants. Isoform analysis revealed that an increase in total SOD activity in the E2 variant was solely due to significant activation of the Cu/Zn isoform. Elevated levels of carotenoids and ascorbate in E2 leaves have been reflected in their higher free radical scavenging capacity (RSC) expressed in terms of DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging ability. Data reflect that a proper balance between enzymatic and non-enzymatic defence systems is required for combating salinity stress in chrysanthemum. Better performance of the E2 progeny under same salinity stress condition, even in the second year, confirms the genetic stability of the salt-tolerance character. On the whole, the E2 variant, developed through 0.025 % EMS treatment, might be considered as a NaCl-tolerant strain showing positive characters towards NaCl stress.

References

  • 1 Acar O., Turkan I., Ozdemir F.. Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) varieties.  Acta Physiologia Plantarum. (2001);  3 351-356
  • 2 Bajaj Y. P. S., Gosal S. S.. Tissue Culture in Economically Important Plants. Singapore; (1982): 25-39
  • 3 Barber D. J. W., Thomas J. K.. Reactions of radicals with lecithin bilayers.  Radiation Research. (1978);  74 51-58
  • 4 Bartoli C. G., Simontacchi M., Guiamet J. J., Montaldi E.. Antioxidant enzymes and lipid peroxidation during aging of Chrysanthemum morifolium RAM petals.  Plant Science. (1995);  104 161-168
  • 5 Bates L. S., Waldren R. P., Teare I. D.. Rapid determination of free proline for water stress studies.  Plant and Soil. (1973);  39 205-207
  • 6 Beyer W. F., Fridovich I.. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions.  Annals of Biochemistry. (1987);  161 559-566
  • 7 Biswal U. C., Mohanty P.. Aging induced change in photosynthetic electron transport of barley leaves.  Plant and Cell Physiology. (1976);  17 322-331
  • 8 Blum A., Ebercon A.. Cell membrane stability as measure of drought and heat tolerance in wheat.  Crop Science. (1981);  21 43-47
  • 9 Bor M., Ozdemir F., Turkan I.. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L.  Plant Science. (2003);  164 77-84
  • 10 Bowler C., Van Montagu T., Inze D.. Superoxide dismutase and stress tolerance.  Annual Review of Plant Physiology and Plant Molecular Biology. (1992);  43 83-116
  • 11 Bradford M. M.. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Annals of Biochemistry. (1976);  72 248-254
  • 12 Brand-Williams W., Cuvelier M. E., Berset C.. Use of free radical method to evaluate antioxidant activity.  Food Science and Technology. (1995);  28 25-30
  • 13 Brennan T., Frenkel C.. Involvement of hydrogen peroxide in regulation of sene-scence in pear.  Plant Physiology. (1977);  59 411-416
  • 14 Cao G., Sofic E., Prior R. L.. Antioxidant capacity of tea and common vegetables.  Journal of Agricultural and Food Chemistry. (1996);  44 3426-3431
  • 15 Carlberg I., Mannervik B.. Glutathione reductase. Alton, M., ed. Methods in Enzymology. San Diego, California; Academic Press (1985): 484-490
  • 16 Chang H., Siegel B. Z., Siegel S. M.. Salinity induced changes in isoperoxidase in taro, Colocasia esculenta. .  Phytochemistry. (1984);  23 233-235
  • 17 Chinnusamy V., Schumaker K., Zhu J.-K.. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants.  Journal of Experimental Botany. (2004);  55 225-236
  • 18 Choi C. W., Kim S. C., Hwang S. S., Choi B. K., Ahn H. J., Lee M. Y., Park S. H., Kim S. K.. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison.  Plant Science. (2002);  163 1161-1168
  • 19 Dionisio-Sese M. L., Tobita S.. Antioxidant responses of rice seedlings to salinity stress.  Plant Science. (1998);  135 1-9
  • 20 Dix P. J., Street H. E.. Sodium chloride-resistant cultured cell lines from Nicotiana sylvestris and Capsicum annuum. .  Plant Science Letter. (1975);  5 231-237
  • 21 Fath A., Bethke P., Beligni V., Jones R.. Active oxygen and cell death in cereal aleurone cells.  Journal of Experimental Botany. (2002);  53 1273-1282
  • 22 Fridovich I.. Biological effects of superoxide radical.  Archives of Biochemistry and Biophysics. (1986);  247 1-11
  • 23 Fukutaku Y., Yamada Y.. Sources of proline nitrogen in water stressed soybean (Glycine max) II, Fate of 15N-labled protein.  Physiologia Plantarum. (1984);  61 622-628
  • 24 Gosal S. S., Bajaj Y. P. S.. Isolation of sodium chloride cell lines in some grain-legumes.  Indian Journal of Experimental Biology. (1984);  22 209-214
  • 25 Gossett D. R., Millhollon E. P., Lucas M. C.. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton.  Crop Science. (1994);  34 706-714
  • 26 Greenway H., Munns R.. Mechanism of salt tolerance in nonhalophytes.  Annual Review of Plant Physiology. (1980);  31 149-190
  • 27 Gutteridge J. M. C.. The role of O2 •- and OH in phospholipid peroxidation catalyzed by Fe salts.  FEBS Letters. (1982);  150 454-459
  • 28 Hagemeyer J.. Salt. Prasad, M. N. V., ed. Plant Ecophysiol. New York; Wiley (1997): 173-205
  • 29 Halliwell B., Gutteridge J. M. C.. Free Radicals in Biology and Medicine. Oxford, UK; Oxford University Press (1999)
  • 30 Hernandez J. A., Olmos E., Corpas F. J., Sevilla F., Rio L. A.. Salt induced oxidative stress in chloroplast of pea plants.  Plant Science. (1995);  105 151-167
  • 31 Hertog M. G. L., Hollman P. C. H., Katan M. B.. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands.  Journal of Agricultural and Food Chemistry. (1992);  40 2379-2383
  • 32 Kivits G. A. A., Vam der Sman F. J. P., Tijburg L. B. M.. Analysis of catechin from green and black tea in humans: a specific and sensitive colorimetric assay of total catechins in biological fluids.  International Journal of Food Sciences and Nutrition.. (1997);  48 387-392
  • 33 Laemmli U. K.. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.  Nature. (1970);  227 680-685
  • 34 Larson R. A.. The antioxidants of higher plants.  Phytochemistry. (1988);  4 969-978
  • 35 Lee D. H., Kim Y. S., Lee C. B.. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.).  Journal of Plant Physiology. (2001);  158 737-745
  • 36 Lichtenthaler H. K.. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.  Methods in Enzymology. (1987);  148 350-382
  • 37 Mensor L. L., Menezes F. S., Leitão G. G., Reis A. S., dos Santos T. C., Coube C. S., Leitão S. G.. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method.  Phytotherapy Research. (2001);  15 127-130
  • 38 Miyake C., Asada K.. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids.  Plant and Cell Physiology. (1992);  33 541-553
  • 39 Mukherjee S. P., Choudhari M. A.. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings.  Physiologia Plantarum. (1983);  58 166-170
  • 40 Murashige T., Skoog F.. A revised medium for rapid growth and bioassay with tobacco tissue culture.  Physiologia Plantarum. (1962);  15 473-497
  • 41 Nabors M. W., Gibbs S. E., Berstein C. S., Meis M. E.. NaCl-tolerant tobacco plants from cultured cells.  Zeitschrift für Pflanzenphysiologie. (1980);  97 13-17
  • 42 Nakano Y., Asada K.. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast.  Plant and Cell Physiology. (1981);  22 867-880
  • 43 Ohkawa H., Ohishi N., Yagi K.. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction.  Annals of Biochemistry. (1979);  95 351-358
  • 44 Premachandra G. S., Saneoka H., Fujita K., Ogata S.. Leaf water relations osmotic adjustment, cell membrane stability, epi cuticular wax load and growth as affected by increasing water deficits in Sorghum. .  Journal of Experimental Botany. (1992);  43 1569-1576
  • 45 Raymond S.. Acrylamide gel electrophoresis.  Annual NewYork Academy of Science. (1964);  121 350-365
  • 46 Sairam R. K., Srivastava G. C.. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress.  Plant Science. (2002);  162 897-904
  • 47 Sairam R. K., Deshmukh P. S., Shukla D. S.. Tolerance to drought and temperature stress in relation to increased antioxidant enzyme activity in wheat.  Journal of Agronomy and Crop Science. (1997);  178 171-177
  • 48 Sakamoto A., Okumura T., Kaminaka H., Sumi K., Tanaka K.. Structure and differential response to abscisic acid of two promoters for the cytosolic copper zinc-superoxide dismutase genes, SodCc1 and SodCc2, in rice protoplasts.  FEBS Letters. (1995);  358 62-66
  • 49 Shalata A., Tal M.. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. .  Physiologia Plantarum. (1998);  104 169-174
  • 50 Shalata A., Mittova V., Volokita M., Guy M., Tal M.. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system.  Physiologia Plantarum. (2001);  112 487-494
  • 51 Singh B. D.. Plant Breeding Principles and Methods. New Delhi; Kalyani Publishers (1999): 363-375
  • 52 Steward G. R., Lee J. A.. The role of proline accumulation in halophytes.  Planta. (1974);  120 279-289
  • 53 Swain N. K., Choudhury N. K., Raval M. K., Biswal U. C.. Differential changes in fluorescence characteristics in photosystem II rice grana fraction during aging in light and dark.  Photosynthetica. (1990);  24 135-142
  • 54 Vaidyanathan H., Sivakumar P., Chakrabarty R., Thomas G.. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) - differential response in salt-tolerant and sensitive varieties.  Plant Science. (2003);  165 1411-1418
  • 55 Wang J., Zhang H., Allen R. D.. Over expression of an Arabidopsis peroxisomal ascorbate gene increases protection against oxidative stress.  Plant and Cell Physiology. (1999);  40 725-732
  • 56 Xiong L., Ishitani M., Lee H., Zhu J.-K.. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression.  Plant Cell. (2001);  13 2063-2083
  • 57 Yamaguchi H.. Use of induced mutations for crop improvement: revisited. Datta, S. K., ed. Role of Classical Mutation Breeding in Crop Improvement. New Delhi; Daya Publishing House (2005): 1-19
  • 58 Zhu D., Scandalios J. G.. Differential accumulation of manganese-superoxide dismutase transcripts in maize in response to abscisic acid and high osmoticum.  Plant Physiology. (1994);  106 173-178

S. K. Datta

Botanic Garden and Floriculture Division
National Botanical Research Institute

Rana Pratap Marg

Lucknow - 226001, Uttar Pradesh

India

Email: subodhdatta@usa.net

Editor: J. T. M. Elzenga

    >