Abstract
The mitogen-activated protein kinase (MAPK) cascades play important roles in transmission of extracellular signals to the downstream effector proteins through a mechanism of protein phosphorylation. In this study, we isolated and identified a novel rice MAPK gene, OsBIMK2 (Oryzae sativa L. BTH-Induced MAP Kinase 2). The OsBIMK2 encodes a 506 amino acid protein with molecular weight of 63 kD. The recombinant OsBIMK2 expressed in Escherichia coli showed an autophosphorylation activity in vitro . OsBIMK2 is a single-copy gene in the rice genome. Expression of OsBIMK2 was activated upon treatment with benzothiadiazole (BTH), which is capable of inducing disease resistance in rice. Expression of OsBIMK2 was also up-regulated during early stage after inoculation with Magnaporthe grisea in BTH-treated rice seedlings and during an incompatible interaction between M. grisea and a blast-resistant rice genotype. Over-expression of the rice OsBIMK2 gene in transgenic tobacco resulted in an enhanced disease resistance against tomato mosaic virus and a fungal pathogen, Alternaria alternata . These results suggest that OsBIMK2 plays a role in disease resistance responses.
Key words
MAPK cascades - benzothiadiazole (BTH) -
Magnaporthe grisea
- disease resistance response - rice (Oryza sativa L.) - transgenic tobacco - tomato mosaic virus (ToMV) -
Alternaria alternata
References
1
Agrawal G. K., Rakwal R., Iwahashi H..
Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues.
Biochemistry and Biophysics Research Communication.
(2002);
294
1009-1016
2
Agrawal G. K., Iwahashi H., Rakwal R..
Rice MAPKs.
Biochemistry and Biophysics Research Communication.
(2003 a);
302
171-180
3
Agrawal G. K., Agrawal S. K., Shibato J., Iwahashi H., Rakwal R..
Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation.
Biochemistry and Biophysics Research Communication.
(2003 b);
300
775-783
4
Asai T., Tena G., Plotnikova J., Willmann M. R., Chiu W. L., Gomez-Gomez L., Boller T., Ausubel F. M., Sheen J..
MAP kinase signaling cascade in Arabidopsis innate immunity.
Nature.
(2002);
415
977-983
5
Cardinale F., Jonak C., Ligterink W., Niehaus K., Boller T., Hirt H..
Differential activation of four specific MAPK pathways by distinct elicitors.
Journal of Biological Chemistry.
(2000);
275
36734-36740
6
Cheong Y. H., Moon B. C., Kim J. K., Kim C. Y., Kim M. C., Kim I. H., Park C. Y., Kim J. C., Park B. O., Koo S. C., Yoon H. W., Chung W. S., Lim C. O., Lee S. Y., Cho M. J..
BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor.
Plant Physiology.
(2003);
132
1961-1972
7
Desikan R., Hancock J. T., Ichimura K., Shinozaki K., Neill S. J..
Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6.
Plant Physiology.
(2001);
126
1579-1587
8
del Pozo O., Pedley K. F., Martin G. B..
MAPKKKalpha is a positive regulator of cell death associated with both plant immunity and disease.
The EMBO Journal.
(2004);
23
3072-3082
9
Ekengren S. K., Liu Y., Schiff M., Dinesh-Kumar S. P., Martin G. B..
Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato.
The Plant Journal.
(2003);
36
905-917
10
Frye C. A., Tang D., Innes R. W..
Negative regulation of defense responses in plants by a conserved MAPKK kinase.
Proceedings of the National Academy of Sciences of the USA.
(2001);
98
373-378
11
Fu S. F., Chou W. C., Huang D. D., Huang H. J..
Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses.
Plant Cell and Physiology.
(2002);
43
958-963
12
He C., Fong S. H., Yang D., Wang G. L..
BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice.
Molecular Plant-Microbe Interaction.
(1999);
12
1064-1073
13
Her J., Lakhani S., Zu K., Vila J., Dent P., Sturgill T. W., Weber M. J..
Dual phosphorylation and autophosphorylation in mitogen-activated protein (MAP) kinase activation.
Biochemical Journal.
(1993);
296
25-31
14
Huang Y., Li H., Gupta R., Morris P. C., Luan S., Kieber J. J..
AtMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation.
Plant Physiology.
(2000);
122
1301-1310
15
Huang H. J., Fu S. F., Tai Y. H., Chou W. C., Huang D. D..
Expression of Oryza sativa MAP kinase gene is developmentally regulated and stress-responsive.
Physiologia Plantarum.
(2002);
114
572-580
16
Ichimura K., Mizoguchi T., Yoshida R., Yuasa T., Shinozaki K..
Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6.
The Plant Journal.
(2000);
24
655-665
17
Jin H., Axtell M. J., Dahlbeck D., Ekwenna O., Zhang S., Staskawicz B., Baker B..
NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants.
Developmental Cell.
(2002);
3
291-297
18
Jin H., Liu Y., Yang K. Y., Kim C. Y., Baker B., Zhang S..
Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco.
The Plant Journal.
(2003);
33
719-731
19
Jonak C., Kiegerl S., Ligterink W., Baker P. J., Huskisson N. S., Hirt H..
Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought.
Proceedings of the National Academy of Sciences of the USA.
(1996);
93
11274-11279
20
Jonak C., Okresz L., Bogre L., Hirt H..
Complexity, cross talk and integration of plant MAP kinase signaling.
Current Opinion in Plant Biology.
(2002);
5
415-424
21
Kim C. Y., Zhang S..
Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco.
The Plant Journal.
(2004);
38
142-151
22
Kovtun Y., Chiu W. L., Tena G., Sheen J..
Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants.
Proceedings of the National Academy of Sciences of the USA.
(2000);
97
2940-2945
23
Kyriakis J. M., Avruch J..
Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation.
Physiological Review.
(2001);
81
807-869
24
Lee D. E., Lee I. J., Han O., Baik M. G., Han S. S., Back K..
Pathogen resistance of transgenic rice plants expressing mitogen-activated protein kinase 1, MK1, from Capsicum annuum .
Molecules and Cells.
(2004);
17
81-85
25
Ligterink W., Hirt H..
Mitogen-activated protein (MAP) kinase pathways in plants: versatile signaling tools.
International Review of Cytology.
(2001);
201
209-275
26
Ligterink W., Kroj T., zur Nieden U., Hirt H., Scheel D..
Receptor-mediated activation of a MAP kinase in pathogen defense of plants.
Science.
(1997);
276
2054-2057
27
Luo H., Song F., Goodman R. M., Zheng Z..
Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses.
Plant Biology.
(2005 a);
7
459-468
28
Luo H., Song F., Zheng Z..
Overexpression in transgenic tobacco reveals different roles for the rice homeodomain gene OsBIHD1 in biotic and abiotic stress responses.
Journal of Experimental Botany.
(2005 b);
56
2673-2682
29
MAPK Group. .
Mitogen-activated protein kinase cascades in plants: a new nomenclature.
Trends in Plant Sciences.
(2002);
7
301-308
30
Menke F. L., van Pelt J. A., Pieterse C. M., Klessig D. F..
Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis .
Plant Cell.
(2004);
16
897-907
31
Mikolajczyk M., Awotunde O. S., Muszynska G., Klessig D. F., Dobrowolska G..
Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells.
Plant Cell.
(2000);
12
165-178
32
Mizoguchi T., Irie K., Hirayama T., Hayashida N., Yamaguchi-Shinozaki K., Matsumoto K., Shinozaki K..
A gene encoding a mitogen-activated protein kinase is induced simultaneously with genes for a mitogen-activated protein kinase and S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana .
Proceedings of the National Academy of Sciences of the USA.
(1996);
93
765-769
33
Mockaitis K., Howell S. H..
Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings.
The Plant Journal.
(2000);
24
785-796
34
Nuhse T. S., Peck S. C., Hirt H., Boller T..
Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK6.
Journal of Biological Chemistry.
(2000);
275
7521-7526
35
Ouaked F., Rozhon W., Lecourieux D., Hirt H..
A MAPK pathway mediates ethylene signaling in plants.
The EMBO Journal.
(2003);
22
1282-1288
36
Petersen M., Brodersen P., Naested H., Andreasson E., Lindhart U., Johansen B., Nielsen H. B., Lacy M., Austin M. J., Park J. E., Sharma S. B., Klessig D. F., Martienssen R., Mattsson O., Jensen A. B., Mundy J..
Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance.
Cell.
(2000);
103
1111-1120
37
Ren D., Yang H., Zhang S..
Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis.
.
Journal of Biological Chemistry.
(2002);
277
559-565
38
Roberts C. J., Nelson B., Marton M. J., Stoughton R., Meyer M. R., Bennett H. A., He Y. D., Dai H., Walker W. L., Hughes T. R., Tyers M., Boone C., Friend S. H..
Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles.
Science.
(2000);
287
873-880
39
Romeis T., Piedras P., Zhang S., Klessig D. F., Hirt H., Jones J. D. G..
Rapid Avr-9 and Cf-9 -dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound and salicylate responses.
Plant Cell.
(1999);
11
273-287
40
Samuel M. A., Miles G. P., Ellis B. E..
Ozone treatment rapidly activates MAP kinase signaling in plants.
The Plant Journal.
(2000);
22
367-376
41
Schaeffer H. J., Weber M. J..
Mitogen-activated protein kinases: specific messages from ubiquitous messengers.
Molecular and Cellular Biology.
(1999);
19
2435-2444
42
Schoenbeck M. A., Samac D. A., Fedorova M., Gregerson R. G., Gantt J. S., Vance C. P..
The alfalfa (Medicago sativa) TDY1 gene encodes a mitogen-activated protein kinase homolog.
Molecular Plant-Microbe Interaction.
(1999);
12
882-893
43
Segar R., Krebs E. G..
The MAP kinase signaling cascade.
FASEB Journal.
(1995);
9
726-735
44
Seo S., Okamoto M., Seto H., Ishizuka K., Sano H., Ohashi Y..
Tobacco MAP kinase: a possible mediator in wound signal transduction pathways.
Science.
(1995);
270
1988-1992
45
Song F., Goodman R. M..
OsBIMK1, a rice MAP kinase gene involved in disease resistance responses.
Planta.
(2002);
215
997-1005
46
Tena G., Asai T., Chiu W. L., Sheen J..
Plant mitogen-activated protein kinase signaling cascades.
Current Opinion in Plant Biology.
(2001);
4
392-400
47
Wen J. Q., Oono K., Imai R..
Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice.
Plant Physiology.
(2002);
129
1880-1891
48
Wu J., Rossomando A. J., Her J. H., Del V. R., Weber M. J., Sturgill T. W..
Autophosphorylation in vitro of recombinant 42-kilodalton mitogen-activated protein kinase on tyrosine.
Proceedings of the National Academy of Sciences of the USA.
(1991);
88
9508-9512
49
Widmann C., Gibson S., Jarpe M. B., Johnson G. L..
Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human.
Physiological Review.
(1999);
79
143-180
50
Xing T., Ouellet T., Miki B. L..
Towards genomic and proteomic studies of protein phosphorylation in plant-pathogen interactions.
Trends in Plant Science.
(2002);
7
224-230
51
Xing T., Malik K., Martin T., Miki B. L..
Activation of tomato PR and wound-related genes by a mutagenized tomato MAP kinase kinase through divergent pathways.
Plant Molecular Biology.
(2001);
46
109-120
52
Xiong L. Z., Yang Y. N..
Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase.
Plant Cell.
(2003);
15
745-759
53
Yang K. Y., Liu Y., Zhang S..
Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco.
Proceedings of the National Academy of Sciences of the USA.
(2001);
98
741-746
54
Yeh C. M., Hsiao L. J., Huang H. J..
Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice.
Plant and Cell Physiology.
(2004);
45
1306-1312
55
Yuasa T., Ichimura K., Mizoguchi T., Shinozaki K..
Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase.
Plant and Cell Physiology.
(2001);
42
1012-1016
56
Zhang S., Klessig D. F..
The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK.
Proceedings of the National Academy of Sciences of the USA.
(1998);
95
7225-7230
57
Zhang S., Klessig D. F..
MAPK cascades in plant defense signaling.
Trends in Plant Science.
(2001);
6
520-527
58
Zhang S., Liu Y..
Activation of salicylic acid-induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco.
Plant Cell.
(2001);
13
1877-1889
59
Zhang S., Du H., Klessig D. F..
Activation of the tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp.
Plant Cell.
(1998);
10
435-450
F. Song
Department of Plant Protection College of Agriculture and Biotechnology Zhejiang University
Hangzhou
Zhejiang 310029
P.R. China
Email: fmsong@zju.edu.cn
Editor: J. Cullimore