Abstract
Glutaredoxins (GRXs) are small, ubiquitous oxidoreductases that have been intensively studied in E. coli, yeast and humans. They are involved in a large variety of cellular processes and exert a crucial function in the response to oxidative stress. GRXs can reduce disulfides by way of conserved cysteines, located in conserved active site motifs. As in E. coli, yeast, and humans, GRXs with active sites of the CPYC and CGFS type are also found in lower and higher plants, however, little has been known about their function. Surprisingly, 21 GRXs from Arabidopsis thaliana contain a novel, plant-specific CC type motif. Lately, information on the function of CC type GRXs and redox regulation, in general, is accumulating. This review focuses on recent findings indicating that GRXs, glutathione and redox regulation, in general, seem to be involved in different processes of development, so far, namely in the formation of the flower. Recent advances in EST and genome sequencing projects allowed searching for the presence of the three different types of the GRX subclasses in other evolutionary informative plant species. A comparison of the GRX subclass composition from Physcomitrella, Pinus, Oryza, Populus, and Arabidopsis is presented. This analysis revealed that only two CC type GRXs exist in the bryophyte Physcomitrella and that the CC type GRXs group expanded during the evolution of land plants. The existence of a large CC type subclass in angiosperms supports the assumption that their capability to modify target protein activity posttranslationally has been integrated into crucial plant specific processes involved in higher plant development.
Key words
Glutaredoxin - flower development - redox regulation - disulfide reduction.
References
-
1
Åslund F., Berndt K. D., Holmgren A..
Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria.
Journal of Biological Chemistry.
(1997);
272
30780-30786
-
2
Balachandran S., Xiang Y., Schobert C., Thompson G. A., Lucas W. J..
Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata.
Proceedings of the National Academy of Sciences of the USA.
(1997);
94
14150-14155
-
3
Balmer Y., Koller A., del Val G., Manieri W., Schürmann P., Buchanan B. B..
Proteomics gives insight into the regulatory function of chloroplast thioredoxins.
Proceedings of the National Academy of Sciences of the USA.
(2003);
100
370-375
-
4
Buchanan B. B., Balmer Y..
REDOX REGULATION: a broadening horizon.
Annual Review of Plant Biology.
(2005);
56
187-220
-
5
Chuang C. F., Running M. P., Williams R. W., Meyerowitz E. M..
The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana.
Genes and Development.
(1999);
3
334-344
-
6
Cobbett C. S., May M. J., Howden R., Rolls B..
The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase.
The Plant Journal.
(1998);
16
73-78
-
7
Conner J., Liu Z..
LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development.
Proceedings of the National Academy of Sciences of the USA.
(2000);
97
12902-12907
-
8
Delaney T. P., Uknes S., Vernooij B., Friedrich L., Weymann K., Negrotto D., Gaffney T., Gutrella M., Kessmann H., Ward E., Ryals J..
A central role of salicalic acid in plant disease resistance.
Science.
(1994);
266
1247-1250
-
9
Després C., Chubak C., Rochon A., Clark R., Bethune T., Desveaux D., Fobert P. R..
The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1.
Plant Cell.
(2003);
15
2181-2191
-
10
Dietz K. J..
Redox control, redox signaling, and redox homeostasis in plant cells.
International Review of Cytology.
(2003);
228
141-193
-
11
Dong X..
NPR1, all things considered.
Current Opinion in Plant Biology.
(2004);
7
547-552
-
12
Fernandes A. P., Holmgren A..
Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system.
Antioxidants and Redox Signaling.
(2004);
6
63-74
-
13
Finkemeier I., Goodman M., Lamkemeyer P., Kandlbinder A., Sweetlove L. J., Dietz K. J..
The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress.
Journal of Biological Chemistry.
(2005);
280
12168-12180
-
14
Franks R. G., Wang C., Levin J. Z., Liu Z..
SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG.
Development.
(2002);
129
253-263
-
15
Fujita H., Takemura M., Tani E., Nemoto K., Yokota A., Kohchi T..
An Arabidopsis MADS‐box protein, AGL24, is specifically bound to and phosphorylated by meristematic receptor-like kinase (MRLK).
Plant Cell Physiology.
(2003);
44
735-742
-
16
Ghezzi P..
Regulation of protein function by glutathionylation.
Free Radical Research.
(2005);
39
573-580
-
17
Gelhaye E., Rouhier N., Navrot N., Jacquot J. P..
The plant thioredoxin system.
Cellular and Molecular Life Sciences.
(2005);
62
24-35
-
18
Gille G., Sigler K..
Oxidative stress and living cells.
Folia Microbiol.
(1995);
40
131-152
-
19
Ha C. M., Jun J. H., Nam H. G., Fletcher J. C..
BLADE‐ON-PETIOLE1 encodes a BTB/POZ domain protein required for leaf morphogenesis in Arabidopsis thaliana.
Plant Cell Physiology.
(2004);
45
1361-1370
-
20
Hepworth S. R., Zhang Y., McKim S., Li X., Haughn G. W..
BLADE‐ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis.
Plant Cell.
(2005);
17
1434-1448
-
21
Holmgren A..
Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione.
Proceedings of the National Academy of Sciences of the USA.
(1976);
73
2275-2779
-
22
Isakov N., Witte S., Altman A..
PICOT‐HD: a highly conserved protein domain that is often associated with thioredoxin and glutaredoxin modules.
Trends Biochemical Science.
(2000);
25
537-539
-
23
Ito H., Iwabuchi M., Ogawa K..
The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione.
Plant Cell and Physiology.
(2003);
44
655-660
-
24
Kenrick P., Crane P. R..
The origin and early evolution of plants on land.
Nature.
(1997);
389
33-38
-
25
Klatt P., Molina E. P., de Lacoba M. G., Padilla C. A., Martinez-Galesteo E., Barcena J. A., Lamas S..
Redox regulation of c-Jun DNA binding by reversible S-glutathionylation.
FASEB Journal.
(1999);
13
1481-1490
-
26
Lee K. O., Lee J. R., Yoo J. Y., Jang H. H., Moon J. C., Jung B. G., Chi Y. H., Park S. K., Lee S. S., Lim C. O., Yun D. J., Cho M. J., Lee S. Y..
GSH-dependent peroxidase activity of the rice (Oryza sativa) glutaredoxin, a thioltransferase.
Biochemical and Biophysical Research Communications.
(2002);
296
1152-1156
-
27
Lemaire S. D..
The glutaredoxin family in oxygenic photosynthetic organisms.
Photosynthesis Research.
(2004);
79
305-318
-
29
Liang C. M., Lee N., Cattell D., Liang S. M..
Glutathione regulates interleukin-2 activity on cytotoxic T-cells.
Journal of Biological Chemistry.
(1989);
264
13519-13523
-
30
Lind C., Gerdes R., Hamnell Y., Schuppe-Koistinen I., Brockenhuus von Löwenhielm H., Holmgren A., Cotgreave I. A..
Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis.
Archives of Biochemistry and Biophysics.
(2002);
406
229-240
-
31
May M. J., Leaver C. J..
Arabidopsis thaliana gamma-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs.
Proceedings of the National Academy of Sciences of the USA.
(1994);
91
10059-10063
-
32
Minakuchi K., Yabushita T., Masumura T., Ichihara K., Tanaka K..
Cloning and sequence analysis of a cDNA encoding rice glutaredoxin.
FEBS Letters.
(1994);
337
157-160
-
33
Morell S., Follmann H., Haberlein I..
Identification and localization of the first glutaredoxin in leaves of a higher plant.
FEBS Letters.
(1995);
369
149-152
-
34
Motohashi K., Kondoh A., Stumpp M. T., Hisabori T..
Comprehensive survey of proteins targeted by chloroplast thioredoxin.
Proceedings of the National Academy of Sciences of the USA.
(2001);
98
11224-11229
-
35
Mou Z., Fan W., Dong X..
Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes.
Cell.
(2003);
113
935-944
-
36
Noctor G., Foyer C. H..
ASCORBATE and GLUTATHIONE: keeping active oxygen under control.
Annual Review of Plant Physiology and Plant Molecular Biology.
(1998);
49
249-279
-
37
Norberg M., Holmlund M., Nilsson O..
The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs.
Development.
(2005);
132
2203-2213
-
38
Nulton-Persson A. C., Starke D. W., Mieyal J. J., Szweda L. I..
Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status.
Biochemistry.
(2003);
42
4235-4242
-
39
Ogawa K., Hatano-Iwasaki A., Yanagida M., Iwabuchi M..
Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering.
Plant Cell and Physiology.
(2004);
45
1-8
-
40
Otto S. P., Yong P..
The evolution of gene duplicates.
Advances in Genetics.
(2002);
46
451-483
-
41
Pineda-Molina E., Klatt P., Vazquez J., Marina A., Garcia de Lacoba M., Perez-Sala D., Lamas S..
Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding.
Biochemistry.
(2001);
40
14134-14142
-
42
Rivas S., Rougon-Cardoso A., Smoker M., Schauser L., Yoshioka H., Jones J. D. G..
CITRX thioredoxin interacts with the tomato Cf-9 resistance protein and negatively regulates defence.
EMBO Journal.
(2004);
23
2156-2165
-
43
Rodríguez-Manzaneque M. T., Ros J., Cabiscol E., Sorribas A., Herrero E..
Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae.
Molecular and Cellular Biology.
(1999);
19
8180-8190
-
44
Rouhier N., Gelhaye E., Sautiere P. E., Brun A., Laurent P., Tagu D., Gerard J., de Faӱ E., Meyer Y., Jacquot J. P..
Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a donor.
Plant Physiology.
(2001);
127
1299-1309
-
45
Rouhier N., Gelhaye E., Jacquot J. P..
Glutaredoxin-dependent peroxiredoxin from poplar: protein-protein interaction and catalytic mechanism.
Journal of Biological Chemistry.
(2002);
277
13609-13614
-
46
Rouhier N., Vlamis-Gardikas A., Lillig C. H., Berndt C., Schwenn J. D., Holmgren A., Jacquot J. P..
Characterization of the redox properties of poplar glutaredoxin.
Antioxidants and Redox Signaling.
(2003);
5
15-22
-
47
Rouhier N., Gelhaye E., Jacquot J. P..
Plant glutaredoxins: still mysterious reducing systems.
Cellular and Molecular Life Sciences.
(2004);
61
1266-1277
-
48
Rouhier N., Villarejo A., Srivastava M., Gelhaye E., Keech O., Droux M., Finkemeier I., Samuelsson G., Dietz K. J., Jacquot J. P., Wingsle G..
Identification of plant glutaredoxin targets.
Antioxidants and Redox Signaling.
(2005);
7
919-929
-
49
Running M. P., Meyerowitz E. M..
Mutations in the PERIANTHIA gene of Arabidopsis specifically alter floral organ number and initiation pattern.
Development.
(1996);
122
1261-1269
-
50
Sánchez-Fernández R., Fricker M., Corben L. B., White N. S., Sheard N., Leaver C. J., Van Montagu M., Inzé D., May M. J..
Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control.
Proceedings of the National Academy of Sciences of the USA.
(1997);
94
2745-2750
-
51
Schafer F. Q., Buettner G. R..
Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple.
Free Radical Biology and Medicine.
(2001);
30
1191-1212
-
52
Ströher E., Dietz K. J..
Concepts and approaches towards understanding the cellular redox proteome.
Plant Biology.
(2006);
8
407-418
-
53
Suthantrian M., Anderson M. E., Sharma V. K., Meister A..
Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes via the CD2 and CD3 antigens.
Proceedings of the National Academy of Sciences of the USA.
(1990);
87
3343-3347
-
54
Szederkényi J., Komor E., Schobert C..
Cloning of the cDNA for glutaredoxin, an abundant sieve-tube exudate protein from Ricinus communis L. and characterisation of the glutathione-dependent thiol-reduction system in sieve tubes.
Planta.
(1997);
202
349-356
-
55
Van Loon L. C., Van Strien E. A..
The families of pathogenesis-related proteins, their activities, and comparative analysis of PR‐1 type proteins.
Physiological and Molecular Plant Pathology.
(1999);
55
85-97
-
56
Vernoux T., Wilson R. C., Seeley K. A., Reichheld J. P., Muroy S., Brown S., Spencer C., Maughan S. C., Cobbett C. S., Van Montagu M., Inzé D., May M. J., Sung Z. R..
The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development.
Plant Cell.
(2000);
12
97-110
-
57
Xing S., Rosso M. G., Zachgo S..
ROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana.
Development.
(2005);
132
1555-1565
-
58
Yanofsky M. F., Ma H., Bowman J. I., Drews G. N., Feldmann K. A., Meyerowitz E. M..
The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors.
Nature.
(1990);
346
35-39
-
59
Yalovsky S., Rodriguez-Concepcion M., Bracha K., Toledo-Ortiz G., Gruissem W..
Prenylation of the floral transcription factor APETALA1 modulates its function.
Plant Cell.
(2000);
12
1257-1266
1 These authors contributed equally to the work
S. Zachgo
Max Planck Institute for Plant Breeding Research
Carl-von-Linné-Weg 10
50829 Köln
Germany
eMail: szachgo@mpiz-koeln.mpg.de
Editor: B. Schulz