Abstract
Background: Intra-myocardial transplantation of bone marrow derived cells is currently under clinical evaluation as a therapy for heart failure. A major limitation of all clinical studies for myocardial restoration through cell transfer is the inability to track the fate of the transplanted cells. We present a clinically applicable technique using advanced ultra high-field 7-Tesla (7T) magnetic resonance imaging (MRI) of nanoparticle-labeled transplanted human EPCs in porcine ischemic hearts. Methods: CD133 positive cells were isolated from bone marrow by magnetic bead selection. Positive cells (5 - 8 × 106 cells) were transplanted into porcine ischemic myocardium (n = 8). Control animals (n = 3) received a medium injection. MRI on a 7T scanner was performed to demonstrate the distribution of the EPCs. Results: CD133+ cells were identified on gradient echo images (T1 -weighted) within the myocardium 4 weeks after transplantation. Conclusions: Magnetically labeled EPCs transplanted for therapeutic neovascularization or reduction of infarct size in myocardial ischemia can be visualized by MRI at high-field strengths.
Key words
Cardiovascular surgery - myocardial infarction - heart disease - cell transplantation - bio-imaging
References
1
Soonpaa M H, Koh G Y, Klug M G, Field L J.
Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium.
Science.
1994;
264
98-101
2
Roell W. et al .
Cellular cardiomyoplasty in a transgenic mouse model.
Transplantation.
2002;
73
462-465
3
Ruhparwar A. et al .
Transplanted fetal cardiomyocytes as cardiac pacemaker.
Eur J Cardiothorac Surg.
2002;
21
853-857
4
Ruhparwar A. et al .
Intra-vital fluorescence microscopy for intra-myocardial graft detection following cell transplantation.
Intern J Cardiovasc Imag.
2005;
21
569-574
5
Tomita S. et al .
Autologous transplantation of bone marrow cells improves damaged heart function.
Circul.
1999;
100 (19 Suppl)
II247-II256
6
Orlic D. et al .
Bone marrow cells regenerate infarcted myocardium.
Nature.
2001;
410
701-705
7
Kocher A A. et al .
Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function.
Nat Med.
2001;
7
430-436
8
Fuchs S. et al .
Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia.
J Am Coll Cardiol.
2001;
37
1726-1732
9
Toma C, Pittenger M F, Cahill K S, Byrne B J, Kessler P D.
Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart.
Circul.
2002;
105
93-98
10
Strauer B E. et al .
Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction.
Dtsch Med Wochenschr.
2001;
126
932-938
11
Ghodsizad A. et al .
Autologous bone marrow derived stem therapy in combination with TMLR: a novel therapeutic option for endstage coronary heart disease.
Heart Surg Forum.
2004;
7
E416-E419
12
Hamano K. et al .
Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results.
Jpn Circ J.
2001;
65
845-847
13
Assmus B. et al .
Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE‐AMI).
Circul.
2002;
106
3009-3017
14
Perin E C. et al .
Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy.
Circul.
2004;
110 (11 Suppl 1)
II213-II218
15
Stamm C. et al .
Autologus bone marrow stem cell transplantation for myocardial regeneration after myocardial infarction.
Lancet.
2003;
361
45-46
16
Tse H F. et al .
Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation.
Lancet.
2003;
361
47-49
17
Menasche P.
Skeletal muscle satellite cell transplantation.
Cardiovasc Res.
2003;
58
351-357
18
Pompilio G. et al .
Autologous peripheral blood stem cell transplantation for myocardial regeneration: a novel strategy for cell collection and surgical injection.
Ann Thorac Surg.
2005;
78
1808-1812
19
Balsam L B. et al .
Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium.
Nature.
2004;
428
668-673
20
Nygren J M. et al .
Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation.
Nat Med.
2004;
10
494-501
21
Kraitchman D L. et al .
In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction.
Circul.
2003;
107
2290-2293
22
Dick A J. et al .
Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine.
Circul.
2003;
108
2899-2904
23
Hill J M. et al .
Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells.
Circul.
2003;
108
1009-1914
24
van den Bos E J. et al .
Improved efficacy of stem cell labelling for magnetic resonance imaging studies by the use of cationic liposomes.
Cell Transplant.
2003;
12
743-756
25
Tiwari A, Punshon G, Kidane A, Hamilton G, Seifalian A M.
Magnetic beads (Dynebead) toxicity to endothelial cells at high bead concentration: implications for tissue engineering of vascular prothesis.
Cell Biol Toxicol.
2003;
19
265-272
26
Richel D J. et al .
Highly purified CD34+ cells isolated using magnetically activated cell selection provide rapid engraftment following high-dose chemotherapy in breast cancer patients.
Bone Marrow Transplant.
2000;
25
243-249
27
Wu J C. et al .
Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography.
Circul.
2003;
108
1302-1305
28
Dobert N.
Transplantation of progenitor cells after reperfused acute myocardial infarction: evaluation of perfusion and myocardial viability with FDG‐PET and thallium SPECT.
Eur J Nucl Med Mol Imaging.
2004;
31
1146-1151
29
Hofmann M. et al .
Monitoring of bone marrow cell homing into the infarcted human myocardium.
Circul.
2005;
111
2198-2202
30
Ghodsizad A. et al .
Intraoperative isolation and processing of CD133+ bone marrow derived stem cells.
Cytotherapy.
2004;
6
523-526
1 * Arjang Ruhparwar, Alireza Ghodsizad and Michael Niehaus contributed equally to this paper. This paper is to be presented at the annual meeting of The German Society for Thoracic and Cardiovascular Surgery 2006 in Hamburg as a permanent poster.
Arjang Ruhparwar
Division of Thoracic and Cardiovascular Surgery Hannover Medical School
Carl Neuberg-Straße 1
30625 Hannover
Germany
Phone: + 49 51 15 32 65 81
Fax: + 49 51 15 32 54 04
Email: ruhparwar.arjang@mh-hannover.de