Plant Biol (Stuttg) 2007; 9(1): 41-48
DOI: 10.1055/s-2006-924346
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Designing and Transgenic Expression of Melanin Gene in Tobacco Trichome and Cotton Fiber

X. Xu1 , M. Wu2 , Q. Zhao1 , R. Li2 , J. Chen1 , G. Ao1 , J. Yu1
  • 1State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100094, PR China
  • 2Rainbow Hi-tech Inc. of Xinjiang, Wuchang Road No. 8, Wulumuq 830016, Xinjiang, PR China
Further Information

Publication History

Received: March 7, 2006

Accepted: May 29, 2006

Publication Date:
28 September 2006 (online)

Abstract

In Streptomyces antibioticus, there are two genes TyrA and ORF438 required for the melanin biogenesis. To investigate whether expression of these two genes in cotton can change cotton fiber colour, we modified the TyrA and ORF438 genes to make their codon usage closer to the codon preference of cotton fiber genes. The resulting versions of these two genes were referred to as dtyrA and dORF438, respectively. Vacuolar targeting signals were also added to their ends. Under the cotton fiber specific Ltp3 promoter, dORF438 and dtyrA were first transformed into model plant tobacco (Nicotiana tabacum). Molecular analyses showed that both the dORF438 and dtyrA genes were successfully expressed in transgenic plants, and the melanin deposition was observed in the trichomes of transgenic tobacco. Excitedly, when the same dORF438 and dtyrA expression cassettes were transformed into cotton (Gossypium hirsutum L.) by pollen tube pathway, the colour of cotton fiber changed from white to brown. Molecular analyses confirmed that both genes were transformed into cotton and expressed successfully. All these results indicate that the synthesized dOFR438 and dtyrA genes can work well in tobacco and cotton. Our study may provide a potential method for modifying the colour of cotton fiber.

References

  • 1 Bernan V., Filpula D., Herber W., Bibb M., Katz E.. The nucleotide sequence of the tyrosinase gene from Streptomyes antibioticus and characterization of the gene product.  Gene. (1985);  37 101-110
  • 2 Butler M. J., Lazarovits G., Higgins B. G., Lachance M. A.. Identification of a black yeastisolated from oak bark as belonging to genus Phaeococcomyces sp. analysis of melanin produced by the yeast.  Canadian Journal of Microbiology. (1989);  35 728-734
  • 3 Cervelli M., Cona A., Angelini R., Polticelli F., Federico R.. A barley polyamine oxidase soform with distinct structural features and subcellular localization.  European Journal of Biochemistry. (2001);  268 3816-3830
  • 4 Church M., Gilbert W.. Genomic sequencing.  Proceedings of the National Academy of Sciences of the USA. (1984);  81 1991-1995
  • 5 Dai Z., An G.. Induction of nopaline synthase promoter activity by H2O2 has no direct correlation with salicylic acid.  Plant Physiology. (1995);  109 1191-1197
  • 6 Della-Cioppa G., Garger S. J., Sverlow G. G., Turpen T. H., Grill L. K.. Melanin production in Escherichia coli from a cloned tyrosinase gene.  Biotechnology. (1990);  8 634-638
  • 7 Dixon D. M., Szaniszlo P. J., Polak A.. Dihydroxynaphthalene (DHN) melanin and its relationship with virulence in the early stages of phaeohyphomycosis. Cole, G. T. and Hoch, H. C., eds. The Fungal Spore and Disease Initiation in Plants and Animals. New York, NY; Plenu Press (1991): 297-318
  • 8 Gong Z. Z., Shen W. F., Zhou G. Y., Huang J. Q., Qian S. Y.. Introduction exogenous DNA into plants after self-pollination DNA traverse pathway of pollen-tube to reach embryonic sac.  Science in China, Series B. (1987);  6 611-614
  • 9 Guo S. D., Ni W. C., Xu Q. F.. Fusion gene encoding insecticidal protein and the expression vectorand their application [in Chinese]. CHN patent: ZL 95119563.8, C12N 15/32. (1995)
  • 10 Horsch R. B., Fry J. E., Hoffman N. L., Eicholtz D., Rogers S. D., Fraley R. T.. A simple and general method for transferring genes into plants.  Science. (1985);  227 1229-1231
  • 11 Ibarz A., Pagan J., Garza S.. Kinetic models for colour changes in pear puree during heating at relatively high temperatures.  Journal of Food Engineering. (1999);  39 415-422
  • 12 Jia S. R., Guo S. D., An D. C., Xia G. X.. Transgenic Cotton. Beijing, China; Science Press (2004): 123-126
  • 13 Katz E., Thompson C. J., Hopwook D. A.. Cloning and expression of the tyrosinase gene from Streptomyes antibioticus in Streptomyces lividans.  Journal of General Microbiology. (1983);  l129 2703-2714
  • 14 Kimmel L. B.. New life for an old fiber: attributes and advantages of naturally colored cotton.  AATCC Review. (2001);  1 32-36
  • 15 Kobayashi N., Nakagawa A., Muramatsu T., Yamashina Y., Shirai T., Hashimoto M., Ishigaki Y., Ohnishi T., Mori T.. Supranuclear melanin caps reduce ultraviolet induced DNA photoproducts in human epidermis.  Journal of Investigative Dermatology. (1998);  110 806-810
  • 16 Liu H., Creech R. G., Jenkis J. N., Ma D.. Cloning and promoter analysis of the cotton lipid transfer protein gene LTP3.  Biochimica et Biophysica Acta. (2000);  1487 106-111
  • 17 Marrs K. A., Alfenito M. R., Lloyd A. M., Walbot V. A.. Glutathione S-conjugate transferase involved in vacuolar transfer encoded by the maize bronze-2.  Nature. (1995);  375 397-400
  • 18 Martineau B., McBride K. E., Houck C. M.. Regulation of metallocarboxypeptidase inhibitor gene expression in tomato.  Molecular Genetics and Genomics. (1991);  228 281-286
  • 19 Mlynarova L., Loonen A., Heldens J., Jansen R. C., Keizer P., Stiekema W. J., Nap J. P.. Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region.  Plant Cell. (1994);  6 417-426
  • 20 Montagna W., Carlisle K.. The architecture of black and white facial skin.  Journal of American Academy Dermatology. (1991);  24 929-937
  • 21 Qiu X. M.. Research progress and prospects on naturally-colored cotton [in Chinese].  Cotton Science. (2004);  16 249-254
  • 22 Rea P. A., Li Z. S., Lu Y. P., Drozdowicz Y. M., Martinoia E.. From vacuolar GS‐X pumps to multispecific ABC transporters.  Annual Review of Plant Physiology and Plant Molecular Biology. (1998);  49 727-760
  • 23 Stewart C. N., Via L. E.. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR application.  Biotechniques. (1993);  14 748-750
  • 24 Tsai T. Y., Lee Y. H.. Roles of copper ligands in the activation and secretion of Streptomyes tyrosinase.  Journal of Biological Chemistry. (1998);  273 19243-19250
  • 25 Yu S. M., Lee Y. C., Fang S. C., Chan M. T., Hwa S.F., Liu L. F.. Sugars act as signal molecules and osmotica to regulate the expression of α-amylase genes and metabolic activities in germinating cereal grains.  Plant Molecular Biology. (1996);  30 1277-1289
  • 26 Wang Y., Casadevall A.. Decreased susceptibility of melanized Cryptococcus neoformans to UV light.  Applied and Environmental Microbiology. (1994);  60 3864-3866
  • 27 Zhao M.. A novel approach to gene therapy of albino hair in histoculture with a retroviral Streptomyces tyrosinase gene.  Pigment Cell Research. (2000);  13 345-351

J. Yu

State Key Laboratory for Agrobiotechnology
College of Biological Sciences
China Agricultural University

Yuanmingyuan West Road No. 2

Haidian District, Beijing 100094

PR China

Email: yujj@cau.edu.cn

Editor: M. Koornneef