Zusammenfassung
Hintergrund: Für die zyklischen Veränderungen des Endometriums ist die Angiogenese wesentlich mitverantwortlich. Eine physiologische Angiogenese wird durch die kombinierten Aktivitäten einer Vielzahl von Wachstumsfaktoren gesteuert, zu deren klassischen Vertretern der Vascular Endothelial Growth Factor (VEGF) und die Angiopoetine 1 (Ang1) und 2 (Ang2) gehören. Material und Methoden: In der vorliegenden Arbeit wurde die zyklische Angiogeneseaktivität des gesunden Endometriums anhand der Proben von 22 Patientinnen immunhistochemisch untersucht. Dabei wurde die Proteinlokalisation von VEGF, Ang1 und Ang2 im Drüsen- und Stromakompartiment untersucht. Weiterhin erfolgte die semiquantitative Beurteilung und die Untersuchung der Expressionsmuster dieser drei Faktoren in der Proliferations- und Sekretionsphase. Ergebnisse: Sowohl in den Drüsen als auch im Stroma zeigte sich eine Proteinexpression von VEGF, Ang1 und Ang2. Bei allen drei Faktoren war diese in den Drüsen signifikant höher als im Stroma. Für VEGF und Ang1 fanden sich weder in den Drüsen noch im Stroma signifikante Unterschiede in der Expression in den verschiedenen Zyklusphasen. Im Drüsenkompartiment ergab sich für Ang2 ein vergleichbares Resultat. Im Stroma hingegen zeigte sich eine signifikant höhere Ang2-Expression während der Proliferationsphase im Vergleich zur Sekretionsphase. Schlussfolgerung: Die vorliegenden Ergebnisse legen nahe, dass Ang2 in der Proliferationsphase des Zyklus die angiogenetische Wirkung des VEGF unterstützt. In der Sekretionsphase dagegen ermöglicht die niedrigere Ang2-Expression eine stabilisierende Wirkung des Ang1 auf das Gefäßendothel.
Abstract
Background: Physiologically, angiogenesis is responsible for maintaining normal reproductive function, cyclic endometrial growth and remodeling. Angiogenesis is induced by the expression of angiogenetic factors such as vascular endothelial growth factor (VEGF), angiopoetin 1 (Ang1) and angiopoetin 2 (Ang 2). Material and Methods: Endometrial samples were obtained from 22 healthy, ovulating women undergoing elective surgery. Immunohistochemistry was performed to detect VEGF, Ang1 and Ang2 in endometrial stroma and glands. Semiquantitative evaluation was performed for the three angiogenic factors in the proliferative and secretory phases. The expression of the three parameters was determined by immunohistochemical quantification using specifically developed software. Results: Proteins for VEGF, Ang1 and Ang2 were expressed in the glands as well as in endometrial stroma. In endometrial glands we found a significantly higher expression of the three angiogenetic factors compared to stroma. With respect to the cyclic changes of the endometrium, no significant changes of VEGF and Ang1 were observed in the glands and endometrial stroma. The expression of Ang2 in the glands also remained the same. Compared to the secretory phase of the reproductive cycle, a significantly higher expression of Ang2 was found in endometrial stroma during the proliferative phase. Conclusion: These data indicate a functional role of the angiogenetic factors VEGF, Ang1 and Ang2 and their proangiogenetic effects during the reproductive cycle. Ang1 regulates vascular remodeling and maintenance of vascular integrity, whereas Ang2 acts as an Ang1 antagonist, and provides by the co-expression of VEGF a key de-stabilizing signal involved in initiating neovascularisation. Our results confirm the support of Ang2 in VEGF-regulated angiogenesis during the proliferative phase of the endometrium. In contrast to the proliferative phase a significantly lower expression of Ang2 allows Ang1 to maintain vascular integrity in the secretory phase. Cycle-dependent expression of these angiogenetic growth factors is responsible for the maintenance of the physiological reproductive cycle.
Schlüsselwörter
Endometrium - Angiogenese - VEGF - Angiopoetine - Aktivität
Key words
Endometrium - angiogenesis - VEGF - angiopoetins - activity
Literatur
1
McLaren J. et al .
Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids.
J Clin Invest.
1996;
98
482-489
2
Smith S K.
Angiogenesis.
Semin Reprod Endocrinol.
1997;
15
221-227
3
Smith S K.
Angiogenesis, vascular endothelial growth factor and the endometrium.
Hum Reprod Update.
1998;
4
509-519
4
Torry D S, Torry R J.
Angiogenesis and the expression of vascular endothelial growth factor in endometrium and placenta.
Am J Reprod Immunol.
1997;
37
21-29
5
Carmeliet P, Jain R K.
Angiogenesis in cancer and other diseases.
Nature.
2000;
407
249-257
6
Ferrara N, Davis-Smyth T.
The biology of vascular endothelial growth factor.
Endocr Rev.
1997;
18
4-25
7
Charnock-Jones D S. et al .
Identification and localization of alternately spliced mRNAs for vascular endothelial growth factor in human uterus and estrogen regulation in endometrial carcinoma cell lines.
Biol Reprod.
1993;
48
1120-1128
8
Maisonpierre P C. et al .
Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis.
Science.
1997;
277
55-60
9
Suri C. et al .
Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis.
Cell.
1996;
87
1171-1180
10
Davis S, Yancopoulos G D.
The angiopoietins: Yin and Yang in angiogenesis.
Curr Top Microbiol Immunol.
1999;
237
173-185
11
Torry D S. et al .
Vascular endothelial growth factor expression in cycling human endometrium.
Fertil Steril.
1996;
66
72-80
12
Gargett C E. et al .
Lack of correlation between vascular endothelial growth factor production and endothelial cell proliferation in the human endometrium.
Hum Reprod.
1999;
14
2080-2088
13
Sugino N. et al .
Expression of vascular endothelial growth factor (VEGF) and its receptors in human endometrium throughout the menstrual cycle and in early pregnancy.
Reproduction.
2002;
123
379-387
14
Li X F, Gregory J, Ahmed A.
Immunolocalisation of vascular endothelial growth factor in human endometrium.
Growth Factors.
1994;
11
277-282
15
Shifren J L. et al .
Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis.
J Clin Endocrinol Metab.
1996;
81
3112-3118
16
Hewett P. et al .
Down-regulation of angiopoietin-1 expression in menorrhagia.
Am J Pathol.
2002;
160
773-780
17
Hirchenhain J. et al .
Differential expression of angiopoietins 1 and 2 and their receptor Tie-2 in human endometrium.
Mol Hum Reprod.
2003;
9
663-669
18
Krikun G. et al .
Expression of angiopoietin-2 by human endometrial endothelial cells: regulation by hypoxia and inflammation.
Biochem Biophys Res Commun.
2000;
275
159-163
19
Gescher D M. et al .
A priori implantation potential does not differ in eutopic endometrium of patients with and without endometriosis.
Arch Gynecol Obstet.
2005;
272
117-123
20
Gescher D M. et al .
Immunolocalization of angiopoietin 1 in human peritoneal endometriotic lesions.
Fertil Steril.
2004;
81
857-862
21
Geva E. et al .
Human placental vascular development: vasculogenic and angiogenic (branching and nonbranching) transformation is regulated by vascular endothelial growth factor-A, angiopoietin-1, and angiopoietin-2.
J Clin Endocrinol Metab.
2002;
87
4213-4224
22
Dunk C. et al .
Angiopoietin-1 and angiopoietin-2 activate trophoblast Tie-2 to promote growth and migration during placental development.
Am J Pathol.
2000;
156
2185-2199
23
Li X F. et al .
Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells.
J Clin Endocrinol Metab.
2001;
86
1823-1834
Prof. Dr. O. Ortmann
Klinik für Frauenheilkunde und Geburtshilfe Universität Regensburg Caritas Krankenhaus St. Josef
Landshuter Straße 63
93053 Regensburg
Email: gynaekologie@caritasstjosef.de