Int J Sports Med 2007; 28(5): 431-436
DOI: 10.1055/s-2006-924514
Clinical Sciences

© Georg Thieme Verlag KG Stuttgart · New York

Current Physical Activity is Related to Bone Mineral Density in Males but not in Females

M. Högström1 , A. Nordström1 , 2 , H. Alfredson1 , R. Lorentzon1 , K. Thorsen1 , 3 , P. Nordström1 , 4
  • 1Department of Surgical and Perioperative Science, Sports Medicine Unit, University Hospital of Northern Sweden, Umeå, Sweden
  • 2Department of Community Medicine and Rehabilitation, Rehabilitation Medicine, University Hospital of Northern Sweden, Umeå, Sweden
  • 3Department of Orthopaedic Surgery, Örnsköldsvik Hospital, Örnsköldsvik, Sweden
  • 4Department of Community Medicine and Rehabilitation, Geriatric Medicine, University Hospital of Northern Sweden, Umeå, Sweden
Further Information

Publication History

Accepted after revision: July 20, 2006

Publication Date:
16 November 2006 (online)

Abstract

The purpose of the present study was to investigate the association between high-, medium-, and low-impact physical activity in males and females at the time of peak bone mineral density in young adulthood. The cohort consisted of 62 male medical students (aged 28.1 ± 3.9) and 62 female medical students (aged 25.1 ± 3.9). The bone mineral density (aBMD, g/cm2) of the total body, femoral neck, and lumbar spine, and the bone mineral content (BMC, grams) and area (cm2) of the femoral neck and lumbar spine was measured using dual energy X‐ray absorptiometry. Volumetric BMD (vBMD, mg/cm3) of the femoral neck and lumbar spine was estimated. The total amount of physical activity per week, which was recorded in a questionnaire, was divided into high-impact, medium-impact, and low-impact activity. In the male cohort, hours of high-impact physical activity per week was associated with aBMD and BMC of all sites (r = 0.27 - 0.53, p < 0.05) and bone area of the femoral neck (r = 0.38, p < 0.01). Total amount of physical activity per week was associated with aBMD of the total body and femoral neck, BMC of femoral neck and lumbar spine, femoral neck vBMD, and the lumbar spine area (p < 0.05 for all). Using multiple linear regression, high-impact physical activity was independently associated with aBMD (beta = 0.27, p < 0.05) and BMC (beta = 0.34, p < 0.01) of the femoral neck. In the female cohort there was no association between amount or type of physical activity to aBMD, BMC, vBMD, or the bone area of any site. Instead body weight, lean body mass, or fat mass were significantly related to aBMD and all BMC sites in this group. The results of the present study suggest that present physical activity level has a stronger relation to different aspects of bone mass in the male compared to the female adult skeleton.

References

  • 2 Alfredson H, Nordström P, Lorentzon R. Aerobic workout and bone mass in females.  Scand J Med Sci Sports. 1997;  76 336-341
  • 3 Alfredson H, Nordström P, Lorentzon R. Bone mass in female volleyball players: a comparison of total and regional bone mass in female volleyball players and nonactive females.  Calcif Tissue Int. 1997;  604 338-342
  • 4 Alfredson H, Nordström P, Lorentzon R. Total and regional bone mass in female soccer players.  Calcif Tissue Int. 1996;  596 438-442
  • 5 Bennell K L, Malcolm S A, Khan K M, Thomas S A, Reid S J, Brukner P D, Ebeling P R, Wark J D. Bone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study.  Bone. 1997;  205 477-484
  • 6 Bonjour J P, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence.  J Clin Endocrinol Metab. 1991;  733 555-563
  • 7 Conroy B P, Kraemer W J, Maresh C M, Fleck S J, Stone M H, Fry A C, Miller P D, Dalsky G P. Bone mineral density in elite junior Olympic weightlifters.  Med Sci Sports Exerc. 1993;  2510 1103-1109
  • 1 Consensus Development Conference . Diagnosis, prophylaxis, and treatment of osteoporosis.  Am J Med. 1993;  946 646-650
  • 8 Cummings S R, Nevitt M C, Browner W S, Stone K, Fox K M, Ensrud K E, Cauley J, Black D, Vogt T M. Risk factors for hip fracture in white women. Study of osteoporotic fractures research group (see comments).  N Engl J Med. 1995;  332 767-773
  • 9 Duncan C S, Blimkie C J, Cowell C T, Burke S T, Briody J N, Howman-Giles R. Bone mineral density in adolescent female athletes: relationship to exercise type and muscle strength.  Med Sci Sports Exerc. 2002;  342 286-294
  • 10 Fuchs R K, Bauer J J, Snow C M. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial.  J Bone Miner Res. 2001;  161 148-156
  • 11 Gregg E W, Cauley J A, Seeley D G, Ensrud K E, Bauer D C. Physical activity and osteoporotic fracture risk in older women. Study of Osteoporotic Fractures Research Group.  Ann Intern Med. 1998;  1292 81-88
  • 12 Gustavsson A, Olsson T, Nordstrom P. Rapid loss of bone mineral density of the femoral neck after cessation of ice hockey training: a 6-year longitudinal study in males.  J Bone Miner Res. 2003;  1811 1964-1969
  • 13 Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players.  Bone. 2000;  273 351-357
  • 14 Hetland M L, Haarbo J, Christiansen C, Larsen T. Running induces menstrual disturbances but bone mass is unaffected, except in amenorrheic women.  Am J Med. 1993;  951 53-60
  • 15 Hui S L, Slemenda C W, Johnston Jr C C. The contribution of bone loss to postmenopausal osteoporosis.  Osteoporos Int. 1990;  11 30-34
  • 16 Kannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, Oja P, Vuori I. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players.  Ann Intern Med. 1995;  1231 27-31
  • 17 Khan K M, Bennell K L, Hopper J L, Flicker L, Nowson C A, Sherwin A J, Crichton K J, Harcourt P R, Wark J D. Self-reported ballet classes undertaken at age 10 - 12 years and hip bone mineral density in later life.  Osteoporos Int. 1998;  82 165-173
  • 18 Kirchner E M, Lewis R D, O'Connor P J. Effect of past gymnastics participation on adult bone mass.  J Appl Physiol. 1996;  801 226-232
  • 19 Kontulainen S, Kannus P, Haapasalo H, Heinonen A, Sievanen H, Oja P, Vuori I. Changes in bone mineral content with decreased training in competitive young adult tennis players and controls: a prospective 4-yr follow-up.  Med Sci Sports Exerc. 1999;  315 646-652
  • 20 Lanyon L E. Control of bone architecture by functional load bearing.  J Bone Miner Res. 1992;  7 (Suppl 2) S369-S375
  • 21 MacKelvie K J, Khan K M, McKay H A. Is there a critical period for bone response to weight-bearing exercise in children and adolescents? A systematic review.  Br J Sports Med. 2002;  364 250-257
  • 22 Mackelvie K J, McKay H A, Khan K M, Crocker P R. A school-based exercise intervention augments bone mineral accrual in early pubertal girls.  J Pediatr. 2001;  1394 501-507
  • 23 Morris F L, Naughton G A, Gibbs J L, Carlson J S, Wark J D. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass.  J Bone Miner Res. 1997;  129 1453-1462
  • 24 Neville C E, Murray L J, Boreham C A, Gallagher A M, Twisk J, Robson P J, Savage J M, Kemper H C, Ralston S H, Davey Smith G. Relationship between physical activity and bone mineral status in young adults: the Northern Ireland young hearts project.  Bone. 2002;  305 792-798
  • 25 Nordstrom A, Karlsson C, Nyquist F, Olsson T, Nordstrom P, Karlsson M. Bone loss and fracture risk after reduced physical activity.  J Bone Miner Res. 2005;  202 202-207
  • 26 Nordstrom P, Lorentzon R. Influence of heredity and environment on bone density in adolescent boys: a parent-offspring study.  Osteoporos Int. 1999;  104 271-277
  • 27 Nordstrom P, Lorentzon R. Site-specific bone mass differences of the lower extremities in 17-year-old ice hockey players.  Calcif Tissue Int. 1996;  596 443-448
  • 28 Nordstrom P, Pettersson U, Lorentzon R. Type of physical activity, muscle strength, and pubertal stage as determinants of bone mineral density and bone area in adolescent boys.  J Bone Miner Res. 1998;  137 1141-1148
  • 29 Pettersson U, Nordstrom P, Lorentzon R. A comparison of bone mineral density and muscle strength in young male adults with different exercise level.  Calcif Tissue Int. 1999;  646 490-498
  • 30 Robinson T L, Snow-Harter C, Taaffe D R, Gillis D, Shaw J, Marcus R. Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea.  J Bone Miner Res. 1995;  101 26-35
  • 31 Sinaki M, Canvin J C, Phillips B E, Clarke B L. Site specificity of regular health club exercise on muscle strength, fitness, and bone density in women aged 29 to 45 years.  Mayo Clin Proc. 2004;  795 639-644
  • 32 Sundberg M, Gardsell P, Johnell O, Karlsson M K, Ornstein E, Sandstedt B, Sernbo I. Peripubertal moderate exercise increases bone mass in boys but not in girls: a population-based intervention study.  Osteoporos Int. 2001;  123 230-238
  • 33 Teegarden D, Proulx W R, Kern M, Sedlock D, Weaver C M, Johnston C C, Lyle R M. Previous physical activity relates to bone mineral measures in young women.  Med Sci Sports Exerc. 1996;  281 105-113
  • 34 Vuori I, Heinonen A, Sievanen H, Kannus P, Pasanen M, Oja P. Effects of unilateral strength training and detraining on bone mineral density and content in young women: a study of mechanical loading and deloading on human bones.  Calcif Tissue Int. 1994;  551 59-67

MD, PhD Peter Nordström

Department of Public Health and Clinical Medicine
Medicine Umeå University

90185 Umeå

Sweden

Fax: + 46 90 13 56 92

Email: peter.nordstrom@idrott.umu.se