Plant Biol (Stuttg) 2007; 9(1): 152-157
DOI: 10.1055/s-2006-924537
Short Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Variation in Defence Strategies in Two Species of the Genus Beilschmiedia under Differing Soil Nutrient and Rainfall Conditions

J. Simon1 , 2 , R. E. Miller1 , I. E. Woodrow1
  • 1School of Botany, The University of Melbourne, Parkville, VIC 3010, Australia
  • 2Present address: Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Albert Ludwigs University Freiburg, Georges-Köhler-Allee 053/054, 79085 Freiburg, Germany
Further Information

Publication History

Received: December 13, 2005

Accepted: July 26, 2006

Publication Date:
17 October 2006 (online)

Abstract

The relationships between various leaf functional traits that are important in plant growth (e.g., specific leaf area) have been investigated in recent studies; however, research in this context on plants that are highly protected by chemical defences, particularly resource-demanding nitrogen-based defence, is lacking. We collected leaves from cyanogenic (N-defended) Beilschmiedia collina B. Hyland and acyanogenic (C-defended) Beilschmiedia tooram (F. M. Bailey) B. Hyland at high- and low-soil nutrient sites in two consecutive years that varied significantly in rainfall. We then measured the relationships between chemical defence and morphological and functional leaf traits under the different environmental conditions. We found that the two species differed significantly in their resource allocation to defence as well as leaf morphology and function. The N defended species had a higher leaf nitrogen concentration, whereas the C-defended species had higher amounts of C-based chemical defences (i.e., total phenolics and condensed tannins). The C-defended species also tended to have higher force to fracture and increased leaf toughness. In B. collina, cyanogenic glycoside concentration was higher with higher rainfall, but not with higher soil nutrients. Total phenolic concentration was higher at the high soil nutrient site in B. tooram, but lower in B. collina; however, with higher rainfall an increase was found in B. tooram, while phenolics decreased in B. collina. Condensed tannin concentration decreased in both species with rainfall and nutrient availability. We conclude that chemical defence is correlated with leaf functional traits and that variation in environmental resources affects this correlation.

References

  • 1 Brinker A. M., Seigler D. S.. Methods for the detection and quantitative determination of cyanide in plant materials.  Phytochemical Bulletin. (1989);  21 24-31
  • 2 Burns A. E., Gleadow R. M., Woodrow I. E.. Light alters the allocation of nitrogen to cyanogenic glycosides in Eucalyptus cladocalyx. .  Oecologia. (2002);  133 288-294
  • 3 Coley P. D.. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense.  Oecologia. (1988);  74 531-536
  • 4 Coley P. D., Bryant J. P., Chapin III. F. S.. Resource availability and plant antiherbivore defense.  Science. (1985);  230 895-899
  • 5 Cooper W., Cooper W. T.. Fruits of the Rain Forest. A guide to Fruits in Australian Tropical Rainforest. Surry Hills, NSW, Australia; RD Press (1994): 327
  • 6 Cork S. J., Krockenberger A. K.. Methods and pitfalls of extracting condensed tannins and other phenolics from plants: insights from investigations on Eucalyptus leaves.  Journal of Chemical Ecology. (1991);  17 123-134
  • 7 Cunningham S. A., Summerhayes B., Westoby M.. Evolutionary divergences in leaf structure and chemistry comparing rainfall and soil nutrient gradients.  Ecology. (1999);  69 569-588
  • 8 Evans J. R.. Photosynthesis and nitrogen relationships in leaves of C3 plants.  Oecologia. (1989);  78 9-19
  • 9 Gleadow R. M., Woodrow I. E.. Defence chemistry of cyanogenic Eucalyptus cladocalyx seedlings is affected by water supply.  Tree Physiology. (2002);  22 939-945
  • 10 Gleadow R. M., Foley W. J., Woodrow I. E.. Enhanced CO2 alters the relationship between photosynthesis and defense in cyanogenic Eucalyptus cladocalyx F. J. Muell.  Plant, Cell and Environment. (1998);  21 12-22
  • 11 Hyland B. P. M., Whiffin T., Christophel D. C., Gray B., Elick R. W.. Australian Tropical Rain Forest Plants. Trees, Shrubs and Vines. CD‐ROM. Melbourne, Australia; CSIRO Publishing (2003)
  • 12 Iddles T. L., Read J., Sanson G. D.. The potential contribution of biomechanical properties to anti-herbivore defence in seedlings of six Australian rainforest trees.  Australian Journal of Botany. (2003);  51 119-128
  • 13 Jeffrey S. W., Humphrey G. F.. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton.  Biochemie und Physiologie der Pflanzen. (1975);  167 191-194
  • 14 Lowman M. D., Box J. D.. Variation in leaf toughness and phenolic content among five species of Australian rain forest trees.  Australian Journal of Ecology. (1983);  8 17-35
  • 15 Miller R. E.. Cyanogenesis in Australian rainforests: resource allocation to a nitrogen-based defence. PhD Thesis, School of Botany, The University of Melbourne, Australia. (2004): 264
  • 16 Miller R. E., Gleadow R. M., Woodrow I. E.. Cyanogenesis in tropical Prunus turneriana: characterisation, variation and response to low light.  Functional Plant Biology. (2004);  31 491-503
  • 17 Miller R. E., Jensen R., Woodrow I. E.. Frequency of cyanogenesis in tropical rain forests of Far North Queensland, Australia.  Annals of Botany. (2006);  97 1017-1044
  • 18 Nix H. A.. Biogeography: pattern and process. Nix, H. A. and Switzer, M. A., eds. Rainforest Animals. Atlas of Vertebrates Endemic to Australia's Wet Tropics. Canberra, Australia; Australian National Parks and Wildlife Service (1991): 11-40
  • 19 Mooney H. A., Ferrar P. J., Slatyer R. O.. Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus.  Oecologia. (1978);  36 103-111
  • 20 Poorter H., Evans J. R.. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area.  Oecologia. (1998);  116 26-37
  • 21 Poorter H., Remkes C.. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate.  Oecologia. (1990);  83 553-559
  • 22 Read J., Sanson G. D.. Characeterising sclerophylly: the mechanical properties of a diverse range of leaf types.  New Phytologist. (2003);  160 81-99
  • 23 Reich P. B., Ellsworth D. S., Walters M. B.. Leaf structure (specific leaf area) modulates photosynthesis - nitrogen relations: evidence from within and across species and functional groups.  Functional Ecology. (1998);  12 948-958
  • 24 Reich P. B., Walters M. B., Ellsworth D. S.. From tropics to tundra: global convergence in plant functioning.  Proceedings of the National Academy of Sciences of the USA. (1997);  94 13730-13734
  • 25 Reich P. B., Walters M. B., Ellsworth D. S.. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems.  Ecological Monographs. (1992);  62 365-392
  • 26 Reich P. B., Uhl C., Walters M. B., Ellsworth D. S.. Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species.  Oecologia. (1991);  86 16-24
  • 27 Schulze E. D., Williams R. S., Farquhar G. D., Schulze W., Langridge J., Miller J. M., Walker B. H.. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia.  Australian Journal of Plant Physiology. (1998);  25 413-425
  • 28 Specht R. L., Specht A.. Canopy structure in Eucalyptus-dominated communities in Australia along climatic gradients.  Acta Oecologica. (1989);  10 191-213
  • 29 Tracey J. G.. The Vegetation of the Humid Tropical Region of North Queensland. Melbourne, Australia; CSIRO (1982): 124
  • 30 Tracey J. G., Webb L. J.. Vegetation of the Humid Tropical Region of North Queensland. Indooroopilly, Australia; CSIRO (1975)
  • 31 van der Werf A., van Nuenen M., Visser A. J., Lambers H.. Contribution of physiological and morphological plant traits to a species' competitive ability at high and low nutrient supply.  Oecologia. (1993);  94 434-440
  • 32 Waterman P. G., Mole S.. Analysis of Phenolic Plant Metabolites. Oxford, UK; Blackwell Scientific Publications (1994)
  • 33 Westoby M., Falster D. S., Moles A. T., Vesk P. A., Wright I. J.. Plant ecological strategies: some leading dimensions of variation between species.  Annual Review of Ecology and Systematics. (2002);  33 125-159
  • 36 Woodrow I. E., Slocum D. J., Gleadow R. M.. Influence of water stress on cyanogenic capacity in Eucalyptus cladocalyx.  Functional Plant Biology. (2002);  29 103-110
  • 37 Wright I. J., Cannon K.. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora.  Functional Ecology. (2001);  15 351-360
  • 38 Wright I. J., Westoby M.. Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients.  Journal of Ecology. (1999);  87 85-97
  • 39 Wright I. J., Westoby M.. Understanding seedling growth relationships through specific leaf area and leaf nitrogen concentration: generalisations across growth forms and growth irradiance.  Oecologia. (2001);  127 21-29
  • 40 Wright I. J., Reich P. B., Westoby M.. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats.  Functional Ecology. (2001);  15 423-434
  • 41 Wright I. J., Westoby M., Reich P. B.. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf lifespan.  Journal of Ecology. (2002);  90 534-543

J. Simon

Institute of Forest Botany and Tree Physiology
Chair of Tree Physiology
Albert Ludwigs University Freiburg

Georges-Köhler-Allee 053/054

79085 Freiburg

Germany

Email: judy.simon@ctp.uni-freiburg.de

Editor: M. C. Ball