Plant Biol (Stuttg) 2007; 9(4): 489-501
DOI: 10.1055/s-2006-924759
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Brefeldin A Action and Recovery in Chlamydomonas are Rapid and Involve Fusion and Fission of Golgi Cisternae

E. Hummel[*] 1 , R. Schmickl[*] 1 , G. Hinz1 , S. Hillmer1 , D. G. Robinson1
  • 1Department of Cell Biology, Heidelberg Institute for Plant Sciences (HIP), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
Further Information

Publication History

Received: July 4, 2006

Accepted: October 18, 2006

Publication Date:
15 February 2007 (online)

Abstract

Chlamydomonas noctigama has a non-motile Golgi apparatus consisting of several Golgi stacks adjacent to transitional ER. These domains are characterized by vesicle-budding profiles and the lack of ribosomes on the side of the ER proximal to the Golgi stacks. Immunogold labelling confirms the presence of COPI-proteins at the periphery of the Golgi stacks, and COPII-proteins at the ER-Golgi interface. After addition of BFA (10 µg/ml) a marked increase in the number of vesicular profiles lying between the ER and the Golgi stacks is seen. Serial sections of cells do not provide any evidence for the existence of tubular connections between the ER and the Golgi stacks, supporting the notion that COPI- but not COPII-vesicle production is affected by BFA. The fusion of COPII-vesicles at the cis-Golgi apparatus apparently requires the presence of retrograde COPI-vesicles. After 15 min the cisternae of neighbouring Golgi stacks begin to fuse forming “mega-Golgis”, which gradually curl before fragmenting into clusters of vesicles and tubules. These are surrounded by the transitional ER on which vesicle-budding profiles are still occasionally visible. Golgi remnants continue to survive for several hours and do not completely disappear. Washing out BFA leads to a very rapid reassembly of Golgi cisternae. At first, clusters of vesicles are seen adjacent to transitional ER, then “mini Golgis” are seen whose cisternae grow in length and number to produce “mega Golgis”. These structures then divide by vertical fission to produce Golgi stacks of normal size and morphology roughly 60 min after drug wash-out.

References

  • 1 Altan-Bonnet N., Sougrat R., Lippincott-Schwartz J.. Molecular basis for Golgi maintenance and biogenesis.  Current Opinions in Cell Biology. (2004);  16 364-372
  • 68 Amrhein N., Filner P.. Adenosine 3′:5′-cyclic monophosphate in Chlamydomonas reinhardtii: isolation and characterization.  Proceedings of the National Academy of Sciences of the USA. (1973);  70 1099-1103
  • 2 Aniento F., Matsuoka K., Robinson D. G.. ER to Golgi transport: the COPII pathway. Robinson, D. G., ed. The Plant Endoplasmic Reticulum, Plant Cell Monographs, Vol. 4. Heidelberg; Springer Verlag (2006): 99-124
  • 3 Balch W. E.. Vesicle traffic in vitro.  Cell. (2004);  116 17-19
  • 4 Bannykh S. I., Rowe T., Balch W. E.. The organization of endoplasmic reticulum export complexes.  Journal of Cell Biology. (1996);  135 19-35
  • 5 Becker B., Hickisch A.. Inhibition of contractile vacuole function by brefeldin A.  Plant Cell Physiology. (2005);  46 201-212
  • 6 Becker B., Melkonian M.. The secretory pathway of protists: spatial and functional organization and evolution.  Microbiology Reviews. (1996);  60 697-721
  • 7 Benchimol M., Ribiero K. C., Mariante R. M., Alderete J. F.. Structure and division of the Golgi complex in Trichomonas vaginalis and Tritrichomonas foetus.  European Journal of Cell Biology. (2001);  80 593-607
  • 8 Bevis B. J., Hammond A. T., Reinke C. A., Glick B. S.. De novo formation of transitional ER sites and Golgi structures in Pichia pastoris.  Nature Cell Biology. (2002);  4 750-756
  • 9 Boevink P., Oparka K., Santa Cruz S., Martin B., Betteridge A., Hawes C.. Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network.  The Plant Journal. (1998);  15 441-447
  • 69 Bonfanti L., Mironov A., Martinez-Menarguez J., Martella O., Fusella A., Baldassare M., Buccione R., Geuze H., Mironov A., Luini A.. Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation.  Cell. (1998);  95 993-1003
  • 10 Bonifacino J. S., Glick B. S.. The mechanisms of vesicle budding and fusion.  Cell. (2004);  116 153-166
  • 11 Brandizzi F., Snap E., Roberts A., Lippincott-Schwartz J., Hawes C.. Membrane protein transport between the ER and Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching.  Plant Cell. (2002);  14 1293-1309
  • 12 Cox R., Mason-Gamer R. J., Jackson C. L., Segev N.. Phylogenetic analysis of Sec7-domain-containing Arf nucleotide exchangers.  Molecular Biology of the Cell. (2004);  15 1487-1505
  • 13 daSilva L. L., Snapp E. L., Denecke J., Lippincott-Schwartz J., Hawes C., Brandizzi F.. Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells.  Plant Cell. (2004);  16 1753-1771
  • 14 Dairman M., Donofrio N., Domozych D. S.. The effects of brefeldin A upon the Golgi apparatus of the green algal flagellate, Gloeomonas kupfferi.  Journal of Experimental Botany. (1995);  46 181-186
  • 15 Donaldson J. G., Honda A., Weigert R.. Multiple activities for Arf1 at the Golgi complex.  Biochimica et Biophysica Acta. (2005);  1744 364-373
  • 16 Domozych D. S.. Disruption of the Golgi apparatus and secretory mechanism in the desmid, Closterium acerosum by brefeldin A.  Journal of Experimental Botany. (1999);  50 1323-1330
  • 17 Falk H., Kleinig H.. Feinbau und Carotinoide von Tribonema (Xantophyceae).  Archiv für Mikrobiologie. (1968);  61 347-362
  • 18 Geldner N., Anders N., Wolters H., Keicher J., Kornberger W., Muller P., Delbarre A., Ueda T., Nakano A., Jurgens G.. The Arabidopsis GNOM ARF‐GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth.  Cell. (2003);  112 219-230
  • 19 Geldner N., Richter S., Vieten A., Marquardt S., Torres-Ruiz R.A., Mayer U., Jürgens G.. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis.  Development. (2004);  131 389-400
  • 20 Geldner N.. The plant endosomal system - its structure and role in signal transduction and plant development.  Planta. (2004);  219 547-560
  • 70 Glick B. S., Malhotra V. S.. The curious status of the Golgi apparatus.  Cell. (1998);  95 883-889
  • 21 Gruber H. E., Rosario B.. Ultrastructure of the Golgi apparatus and contractile vacuole in Chlamydomonas reinhardtii. .  Cytologica. (1979);  44 505-526
  • 22 Haller K., Fabry S.. Brefeldin A affects synthesis and integrity of a eukaryotic flagellum.  Biochemistry and Biophysical Research Communications. (1998);  242 597-601
  • 23 Hawes C.. The plant Golgi apparatus.  New Phytologist. (2005);  165 29-44
  • 24 Hawes C., Satiat-Jeunemaitre B.. The plant Golgi apparatus - going with the flow.  Biochimica et Biophysica Acta. (2005);  1744 93-107
  • 25 He C. Y., Ho H. H., Malsam J., Chalouni C., West C. M., Ullu E., Toomre D., Warren G.. Golgi duplication in Trypanosoma brucei.  Journal of Cell Biology. (2004);  165 313-321
  • 26 Jackson C. L., Casanova J. E.. Turning on Arf: the sec7 familiy of guanine nucleotide exchange factors.  Trends in Cell Biology. (2000);  121 317-333
  • 27 Jürgens G.. Membrane trafficking in plants.  Annual Reviews in Cell Biology. (2004);  20 481-504
  • 28 Klausner R. D., Donaldson J. G., Lippincott-Schwartz J.. Brefeldin A: insights into the control of membrane traffic and organelle structure.  Journal of Cell Biology. (1992);  116 1071-1080
  • 72 Ladinsky M. S., Mastronarde D. N., McIntosh J. R., Howell K. E., Staehelin L. A.. Golgi structure in three dimensions: functional insights from the normal rat kidney cell.  Journal of Cell Biology. (1999);  114 1135-1149
  • 73 Lamandé S. R., Bateman J. F.. Procollagen folding and assembly: the role of endoplasmic reticulum enzymes and molecular chaperones.  Seminars in Cell and Developmental Biology. (1999);  10 455-464
  • 29 Lee M. C. S., Miller E. A., Goldberg J., Orci L., Schekman R.. Bi-directional protein transport between the ER and Golgi.  Annual Reviews in Cell and Developmental Biology. (2004);  20 87-123
  • 30 Lippincott-Schwartz J., Yuan L. C., Bonifacino J. S., Klausner R. D.. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER.  Cell. (1989);  56 801-813
  • 31 Lucic V.. Structural studies by electron tomography: from cells to molecules.  Annual Reviews in Biochemistry. (2005);  74 833-865
  • 74 Meindl U., Lancelle S., Hepler P. K.. Vesicle production and fusion during lobe formation in Micrasterias visualized by high-pressure freeze fixation.  Protoplasma. (1992);  170 104-114
  • 32 Mironov A. A., Beznoussenko G. V., Trucco A., Lupetti P., Smith J. D., Geerts W. J., Koster A. J., Burger K. N., Martone M. E., Deerinck T. J., Ellismann M. H., Luini A.. ER‐to-Golgi carriers arise through en bloc protusion and multistage maturation of specialized ER exit domains.  Developmental Cell. (2003);  5 583-594
  • 33 Morré J., Mollenhauer H. H., Bracker C. E.. Origin and continuity of Golgi apparatus. Reinert, J. and Ursprung, H., eds. Origin and Continuity of Cell Organelles. Berlin, Heidelberg, New York; Springer Verlag (1971): 82-126
  • 34 Movafeghi. A., Happel N., Pimpl P., Tai G. H., Robinson D. G.. Arabidopsis Sec21 and Sec23 homologs. Probable coat proteins of plant COP-coated vesicles.  Plant Physiology. (1999);  119 1437-1446
  • 75 Nebenführ A., Gallagher L. A., Dunahay T. G., Frohlick J. A., Mazurkiewicz A. M., Meehl J. B., Staehelin L. A.. Stop-and-go movements of plant Giolgi stacks are mediated by the acto-myosin system.  Plant Physiology. (1999);  121 1127-1141
  • 35 Nebenführ A., Ritzenthaler C., Robinson D. G.. Brefeldin A: deciphering an enigmatic inhibitor of secretion.  Plant Physiology. (2002);  130 1102-1108
  • 36 Noguchi T., Watanabe H., Suzuki R.. Effects of brefeldin A on the Golgi apparatus, the nuclear envelope and the endoplasmic reticulum in a green alga, Scenedesmus acutus.  Protoplasma. (1998);  201 202-212
  • 37 Noguchi T., Watanabe H.. Brefeldin A effects on the trans-Golgi network and Golgi bodies in Botryococcus braunii are not uniform during the cell cycle.  Protoplasma. (1999);  209 193-206
  • 38 Pelletier L., Stern C. A., Pypaert M., Sheff D., Ngo H. M., Roper N., He C. Y., Hu K., Toomre D., Coppens I., Roos D. S., Joiner K. A., Warren G.. Golgi biogenesis in Toxoplasma gondii.  Nature. (2002);  418 548-552
  • 39 Phillipson B., Pimpl P., Pinto da Silva L., Crofts A. J., Taylor P., Movafeghi A., Robinson D. G., Denecke J.. Secretory bulk flow of soluble proteins is efficient and COPII dependent.  Plant Cell. (2001);  13 2005-2020
  • 40 Pimpl P., Movafeghi A., Coughlan S., Denecke J., Hillmer S., Robinson D. G.. In situ localization and in vitro induction of plant COPI-coated vesicles.  Plant Cell. (2000);  12 2219-2236
  • 41 Polischuck R. S., Mironov A. A.. Structural aspects of Golgi function.  Cell and Molecular Life Sciences. (2004);  61 146-158
  • 43 Presley J. F., Smith C., Hirschberg K., Miller C., Cole N. B., Zaal K. J., Lippincott-Schwartz J.. Golgi membrane dynamics.  Molecular Biology of the Cell. (1998);  7 1617-1626
  • 44 Pröschold T., Birger M., Schlösser U. W., Melkonian M.. Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi and description of Oogochlamys gen. nov. and Lobochlamys gen. nov.  Protist. (2001);  152 265-300
  • 45 Renault L., Guibert B., Cherfils J.. Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor.  Nature. (2003);  426 525-530
  • 76 Ritzenthaler C., Nebenführ A., Movafeghi A., Stussi-Garaud C., Behnia L., Pimpl P., Staehelin L. A., Robinson D. G.. Reevaluation of the effects of brefeldin A on plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera.  Plant Cell. (2002);  14 237-261
  • 77 Robinson D. G., Kristen U.. Membrane flow via the Golgi apparatus of higher plant cells.  International Review of Cytology. (1982);  77 89-127
  • 46 Runions J., Brach T., Kühner S., Hawes C.. Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane.  Journal of Experimental Botany. (2006);  57 43-50
  • 47 Salomon S., Meindl U.. Brefeldin A induces reversible dissociation of the Golgi apparatus in the green alga Micrasterias.  Protoplasma. (1996);  194 231-242
  • 48 Samaj J., Read N. D., Volkmann D., Menzel D., Baluska F.. The endocytic network in plants.  Trends in Cell Biology. (2005);  15 425-433
  • 49 Sasso A., de Faria F. P., Iwamura E. S., Correa H.. A three dimensional reconstruction study of the rough ER-Golgi interface in serial thin sections of the pancreatic acinar cell of the rat.  Journal of Cell Science. (1994);  107 517-528
  • 78 Satiat-Jeunemaitre B., Hawes C. R.. Redistribution of a Golgi glycoprotein in plant cells treated with brefeldin A.  Journal of Cell Science. (1992);  103 1153-1166
  • 50 Satiat-Jeunemaitre B., Cole L., Bourett T., Howard R., Hawes C.. Brefeldin A effects in plant and fungal cells: something new about vesicle trafficking?.  Journal of Microscopy. (1996);  181 162-177
  • 51 Scheel J., Pepperkok R., Lowe M., Griffiths G., Kreis T.. Dissociation of coatomer from membranes is required brefeldin A-induced transfer of Golgi enzymes to the endoplasmic reticulum.  Journal of Cell Biology. (1997);  137 319-333
  • 52 Schekman R., Orci L.. Coat proteins and vesicle budding.  Science. (1996);  271 1526-1533
  • 53 Sciaky N., Presley J., Smith C., Zaal K. J., Cole N., Moreira J. E., Terasaki M., Siggia E., Lippincott-Schwartz J.. Golgi tubule traffic and the effects of brefeldin A visualized in living cells.  Journal of Cell Biology. (1997);  139 1137-1155
  • 54 Staehelin L. A.. The plant ER: a dynamic organelle composed of a large number of discrete functional domains.  The Plant Journal. (1997);  11 1151-1165
  • 55 Staehelin L. A., Driouich A.. Brefeldin A effects in plants: are different Golgi responses caused by different sites of action?.  Plant Physiology. (1997);  114 401-403
  • 56 Stefano G., Renna L., Chatre L., Hanton S. L., Moreau P., Hawes C., Brandizzi F.. In tobacco leaf epidermal cells, the integrity of protein export from the endoplasmic reticulum and of ER export sites depends on active COPI machinery.  The Plant Journal. (2006);  46 95-110
  • 57 Steinmann T., Geldner N., Grebe M., Mangold S., Jackson C. L., Paris S., Gälweiler L., Palme K., Jürgens G.. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF.  Science. (1999);  286 316-318
  • 58 Stephens D. J., Pepperkok R.. Imaging of procollagen transports reaveals COPI dependent cargo sorting during ER‐to-Golgi transport in mammalian cells.  Journal of Cell Science. (2002);  115 1149-1160
  • 59 Takeuchi M., Ueda T., Sato K., Abe H., Nagata T., Nakano A.. A dominant negative mutant of sar1 GTPase inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus in tobacco and Arabidopsis cultured cells.  The Plant Journal. (2000);  23 517-525
  • 60 Tanaka Y., Noguchi T.. Cytoskeleton mediating transport between the ER system and the Golgi apparatus in the green alga Scenedesmus acutus.  European Journal of Cell Biology. (2000);  79 750-758
  • 79 Ward T. H., Polishchuk S., Caplan S., Hirschberg K., Lippincott-Schwarz J.. Maintenance of Golgi structure and function depends on the integrity of ER export.  Journal of Cell Biology. (2001);  155 557-570
  • 62 Warren G.. Membrane partitioning during cell division.  Annual Reviews of Biochemistry. (1993);  62 323-348
  • 63 Wood S. A., Park J. E., Brown W. J.. Brefeldin A causes a microtubule-mediated fusion of the trans Golgi network and early endosomes.  Cell. (1991);  67 591-600
  • 64 Yang Y. D., Elamawi R., Bubeck J., Pepperkok R., Ritzenthaler C., Robinson D. G.. Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY‐2 cells provides evidence for transient association of Golgi stacks with endoplasmic reticulum exit sites.  Plant Cell. (2005);  17 1513-1531
  • 65 Zaal K. J. M., Smith C. L., Polishchuk R. S., Altan N., Cole N. B., Ellenberg J., Hirschberg K., Presley J. F., Roberts T. H., Siggia E., Phair R. D., Lippincott-Schwartz J.. Golgi membranes are adsorbed into and reemerge from the ER during mitosis.  Cell. (1999);  99 589-601
  • 66 Zeuschner D., Geerts W. J. C., van Donselaar E., Humbel B. M., Slot J. W., Koster A., Klumperman J.. Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers.  Nature Cell Biology. (2006);  8 377-383
  • 67 Zhang Y.-H., Robinson D. G.. The endomembranes of Chlamydomonas reinhardii: a comparison of the wildtype with wall mutants CW2 and CW15.  Protoplasma. (1986);  133 186-194

1 These authors contributed equally to this paper

D. G. Robinson

Department of Cell Biology
Heidelberg Institute for Plant Sciences (HIP)
University of Heidelberg

Im Neuenheimer Feld 230

69120 Heidelberg

Germany

Email: david.robinson@urz.uni-heidelberg.de

Editor: S. M. Wick

    >