References and Notes
1a
Millar RW.
Philbin SP.
Claridge RP.
Hamid J.
Propellants, Explos., Pyrotech.
2004,
81
1b
Sikder AK.
Sikder N.
J. Hazard. Mater.
2004,
A112:
1
1c
Singh G.
Singh Kapoor IP.
J. Hazard. Mater.
1999,
A68:
155
1d
Chapman RD.
Wilson WS.
Thermochim. Acta
2002,
384:
229
For C-C bond formation, see:
2a
Alphonse F.-A.
Suzenet F.
Keromnes A.
Lebret B.
Guillaumet G.
Synlett
2002,
447
2b
Alphonse F.-A.
Suzenet F.
Keromnes A.
Lebret B.
Guillaumet G.
Org. Lett.
2003,
5:
803
2c
Alphonse F.-A.
Suzenet F.
Keromnes A.
Lebret B.
Guillaumet G.
Synthesis
2004,
2893
2d For general chemistry, see: Neunhoffer H.
Comprehensive Chemistry II
Vol. 6:
Katritzky AR.
Rees CW.
Scriven EFW.
Pergamon Press;
Oxford UK:
1996.
p.507
For inverse-electron-demand Diels-Alder reaction, see:
2e
Lipinska T.
Tetrahedron Lett.
2002,
43:
9565
2f
Lahue B.
Wan Z.-K.
Snyder JK.
J. Org. Chem.
2003,
68:
4345
2g
Lahue BR.
Lo S.-M.
Wan Z.-K.
Woo GHC.
Snyder JK.
J. Org. Chem.
2004,
69:
7171
2h
Branowska D.
Synthesis
2003,
2096
2i
Bilbao ER.
Alvarado M.
Masguer CF.
Ravina E.
Tetrahedron Lett.
2002,
43:
3551
For fused 1,2,4-triazine derivatives, see:
2j
Garnier E.
Guillard J.
Pasquinet E.
Suzenet F.
Poullain D.
Jarry C.
Léger J.-M.
Lebret B.
Guillaumet G.
Org. Lett.
2003,
5:
4595
2k
Mojzych M.
Rykowski A.
Heterocycles
2004,
63:
1829
2l
Chupakhin ON.
Rusinov GL.
Beresnev DG.
Charushin VN.
Neunhoeffer H.
J. Heterocycl. Chem.
2001,
38:
901
2m
Nagai S.-I.
Miyachi T.
Nakane T.
Ueda T.
Uozumi Y.
J. Heterocycl. Chem.
2001,
38:
379
3a
Pesson M.
Antoine M.
Benichon J.-L.
de Lajudie P.
Horvath E.
Leriche B.
Patte S.
Eur. J. Med. Chem.
1980,
15:
269
3b
Huang JJ.
J. Org. Chem.
1985,
50:
2293
3c
Taylor EC.
McDaniel KF.
Warner JC.
Tetrahedron Lett.
1987,
28:
1977
3d Piazza GA, and Pamukcu R. inventors; Am. Pat. Appl. US6060477.
; Chem. Abstr. 2000, 132, 321870
4a
Jonckers THM.
Maes BUW.
Lemière GLF.
Dommisse R.
Tetrahedron
2001,
57:
7027
4b
Komrlj J.
Maes BUW.
Lemière GLF.
Haemers A.
Synlett
2000,
1581
4c
De Riccardis F.
Johnson F.
Org. Lett.
2000,
2:
293
4d
Schoffers E.
Olsen PD.
Means JC.
Org. Lett.
2001,
3:
4221
4e
Yin J.
Zhao MM.
Huffman MA.
McNamara JM.
Org. Lett.
2002,
4:
3481
5
Garnier E.
Audoux J.
Pasquinet E.
Suzenet F.
Poullain D.
Lebret B.
Guillaumet G.
J. Org. Chem.
2004,
69:
7809
For reviews about metal-catalyzed C-N bond formation, see:
6a
Culkin DA.
Hartwig JF.
Acc. Chem. Res.
2003,
36:
234
6b
Baranano D.
Mann G.
Hartwig JF.
Curr. Org. Chem.
1997,
1:
287
6c
Muci AR.
Buchwald SL.
Cross-Coupling Reactions, In Topics in Current Chemistry
Vol. 219:
Springer-Verlag;
Berlin / Heideberg:
2002.
p.131
6d
Wolfe JP.
Wagaw S.
Marcoux J.-F.
Buchwald SL.
Acc. Chem. Res.
1998,
31:
805
7 For chemical shift assignment, see: Martin ML.
Gouesnard J.-P. In 15
N-NMR Spectrometry
Diehl P.
Fluck E.
Kosfeld R.
Springer-Verlag;
New York:
1981.
p.4
8
Garratt PJ.
Comprehensive Chemistry II
Vol. 4:
Katritzky AR.
Rees CW.
Scriven EFW.
Pergamon Press;
Oxford UK:
1996.
p.127
9
Typical Procedure for the Pd-Catalyzed N-Arylation Cyclization.
A three-necked flask was flushed with N2 and charged with xantphos (20 mol%) and dry dioxane (5 mL). After degassing, Pd(OAc)2 (10 mol%) was added and the mixture was stirred under N2 for 10 min. In another three-necked round-bottom flask, compound 1 (0.100 g, 1.0 equiv), heteroarylamine (1.2 equiv) and K2CO3 (20 equiv) were poured into dry dioxane (7 mL). Then, the Pd(OAc)2/xantphos solution was added via cannula. The resulting mixture was subsequently heated to reflux and vigorously stirred until 1 has disappeared. After cooling down, the solid material was filtered off and washed with CH2Cl2 (20 mL) and MeOH (20 mL). The solvent was evaporated and the resulting crude product was purified by flash column chromatography using CH2Cl2-MeOH (99:1 v/v) as eluent.
Characterization of Compounds 3a and 3b.
Compound 3a: 1H NMR (200 MHz, DMSO): δ = 2.10 (s, 3 H, CH3), 11.97 (br s, 1 H, NH) ppm. 13C NMR (50 MHz, DMSO): δ = 13.1 (CH3), 144.8 (C10a), 153.7 (C5a), 154.1 (C10), 154.6 (C4a), 165.5 (C7), 178.1 (C3) ppm. 15N NMR (30 MHz, DMSO): δ = -296, -258 (NH), -133, -154, -54, -49, 5, 12 (NO2) ppm. IR: ν = 3223, 2975, 1652, 1521, 1352, 1023 cm-1. MS: m/z = 281 [M + 1]. Anal. Calcd for C7H4N8O3S: C, 30.00; H, 1.44; N, 39.99. Found: C, 30.11; H, 1.48; N, 40.05.
Compound 3b: 1H NMR (200 MHz, DMSO): δ = 1.30 (t, J = 8.1 Hz, 3 H, CH3), 2.37 (s, 3 H, SCH3), 4.14 (q, J = 8.1 Hz, 2 H, CH2), 7.03 (dd, J
2
′,4
′ = 1.1 Hz, J
3
′,4
′ = 7.4 Hz, 1 H, H4
′), 7.43 (dd, J
2
′,3
′ = 7.9 Hz, J
3
′,4
′ = 7.4 Hz, 2 H, H3
′ and H5
′), 7.93 (dd, J
2
′,4
′ = 1.1 Hz, J
2
′,3
′ = 7.9 Hz, 2 H, H2
′ and H6
′), 11.43 (br s, 1 H, NH) ppm. 13C NMR (50 MHz, DMSO): δ = 12.1 (CH3), 14.07 (CH3), 62.0 (CH2), 122.9 (C4
′), 123.5 (C2
′ and C6
′), 126.6 (C3
′ and C5
′), 140.5 (C6), 149.4 (C1
′), 155.6 (C5), 163.8 (C=O), 188.1 (C3) ppm. IR: ν = 3188, 2932, 1726, 1663 cm-1. MS: m/z = 291 [M + 1]; mp 85-87 °C. Anal. Calcd for C13H14N4O2S: C, 53.78; H, 4.86; N, 19.30. Found: C, 54.01; H, 4.54; N, 19.12.