Abstract
During the last three decades numerous peptides have been introduced in the treatment of several diseases, though, due to their low bioavailability, non-peptide compounds have been preferred for the generation of new therapeutic agents presenting a peptide as lead candidate. Thus, much effort has been devoted towards the development of isosteres capable to mimic either backbone or side chain structures, in order to improve biological stability and potency, and to reduce the complexity of the lead peptide. Such process has taken advantage of the synthesis of compounds using combinatorial library methodologies, which have achieved a major role in drug discovery, and recently, diversity-oriented synthesis has gained interest from many organic and medicinal chemists. Our group has focused on the development of a new class of bicyclic molecular scaffolds named BTAa (B icycles from T artaric acid and A mino a cids), having a 3-aza-6,8-dioxa-bicyclo[3.2.1]octane as core structure, and amino acid side chain functionalities on stereodefined positions. These molecules are good templates for peptidomimetic design, and examples varying substituents, stereochemistry and ring-size have been reported using different synthetic strategies. Moreover, scaffolds derived from amino ketones and sugar derivatives (BTKa) have been synthesised on solid phase, thus exploring new methodologies for the generation of focused libraries of peptidomimetics. These compounds have been applied as dipeptide isosteres by the introduction in a cyclic oligopeptide chymotripsin inhibitor, and it has been demonstrated that BTAa scaffolds having the carboxylic group in 7-endo position can be considered as mimetics of β-turns in cyclic and linear peptides. New synthetic methodologies for proline-like bicyclic scaffolds have been developed for the production of different species of reverse-turn inducers, and BTAa scaffolds as γ/δ-amino acids have been used as monomers for the synthesis of oligomeric structures.
1 Introduction
2 3-Aza-6,8-dioxabicyclo[3.2.1]octane-Based Scaffolds
2.1 Formal COOH Shift
2.2 BTKa and 7-endo -BTKa
2.3 [4.2.1]- and [5.2.1]-Sized Scaffolds
2.4 Towards Polycyclic Scaffolds
2.5 Chemical Stability
2.6 Structural Features
3 Bicyclic Scaffolds for Combinatorial Chemistry
3.1 Ketone on Resin
3.2 Sugar Moiety on Resin
3.3 Amine on Resin
3.4 Parallel Synthesis of Amides
4 Bicyclic Scaffolds in Foldamer Design
5 Bicyclic Scaffolds as Reverse-Turn Inducers
5.1 BTAa as Reverse-Turn Mimetics in Cyclic Peptides
5.2 BTAa as Reverse-Turn Mimetics in Linear Model Peptides
5.3 Model Peptides for BGS Scaffolds as Proline Mimetics
6 Concluding Remarks
Key words
peptidomimetics - solid-phase synthesis - peptides - conformational analysis - combinatorial chemistry
References and Notes
1
Giannis A.
Kolter T.
Angew. Chem., Int. Ed. Engl.
1993,
32:
1244
2
Gante J.
Angew. Chem., Int. Ed. Engl.
1994,
33:
1699
3
Adessi C.
Soto C.
Curr. Med. Chem.
2002,
9:
963
4
Liskamp RMJ.
Recl. Trav. Chim. Pays-Bas
1994,
113:
1
5
Olson GL.
Bolin DR.
Bonner MP.
Bös M.
Cook CM.
Fry DC.
Graves BJ.
Hatada M.
Hill DE.
Kahn M.
Madison VS.
Rusiecki VK.
Sarabu R.
Sepinwall J.
Vincent GP.
Voss ME.
J. Med. Chem.
1993,
36:
3039
6
Ripka AS.
Rich DH.
Curr. Opin. Chem. Biol.
1998,
2:
441
7
Hirschmann R.
Nicolau KC.
Pietranico S.
Leahy EM.
Salvino J.
Arison B.
Cichy MA.
Spoors PG.
Shakespeare WC.
Sprengeler PA.
Hamley P.
Smith AB.
Reisine T.
Raynor K.
Maechler L.
Donaldson C.
Vale W.
Freidinger RM.
Cascieri MR.
Strader CD.
J. Am. Chem. Soc.
1993,
115:
12550
8
Hirschmann R.
Sprengeler PA.
Kawasaki T.
Leahy JW.
Shakespeare WC.
Smith AB.
J. Am. Chem. Soc.
1992,
114:
9699
9
Lam KS.
Lebl M.
Krchňák V.
Chem. Rev.
1997,
97:
411
10
Dolle RE.
J. Comb. Chem.
2001,
3:
477
11
Dolle RE.
J. Comb. Chem.
2002,
4:
369
12
Dolle RE.
J. Comb. Chem.
2003,
5:
693
13
Dolle RE.
J. Comb. Chem.
2004,
6:
623
14
Thompson LA.
Ellman JA.
Chem. Rev.
1996,
96:
555
15
Nefzi A.
Ostresh JM.
Houghten RA.
Chem. Rev.
1997,
97:
449
16
Golebiowski A.
Klopfenstein SR.
Shao X.
Chen JJ.
Colson A.-O.
Grieb AL.
Russell AF.
Org. Lett.
2000,
2:
2615
17
Creighton CJ.
Zapf CW.
Bu JH.
Goodman M.
Org. Lett.
1999,
1:
1407
18
Kim HO.
Nakanishi H.
Lee MS.
Kahn M.
Org. Lett.
2000,
2:
301
19
Eguchi M.
Lee MS.
Nakanishi H.
Stasiak M.
Lovell S.
Kahn M.
J. Am. Chem. Soc.
1999,
121:
12204
20
Guarna A.
Guidi A.
Machetti F.
Menchi G.
Occhiato EG.
Scarpi D.
Sisi S.
Trabocchi A.
J. Org. Chem.
1999,
64:
7347
21
Cini N.
Machetti F.
Menchi G.
Occhiato EG.
Guarna A.
Eur. J. Org. Chem.
2002,
873
22
Trabocchi A.
Menchi G.
Rolla M.
Machetti F.
Bucelli I.
Guarna A.
Tetrahedron
2003,
59:
5251
23
Trabocchi A.
Cini N.
Menchi G.
Guarna A.
Tetrahedron Lett.
2003,
44:
3489
24
Guarna A.
Bucelli I.
Machetti F.
Menchi G.
Occhiato EG.
Scarpi D.
Trabocchi A.
Tetrahedron
2002,
58:
9865
25 Guarna A, Menchi G, Machetti F, Occhiato EG, and Scarpi D. inventors; WO 01/64686.
; Chem. Abstr . 2001 , 135 , 211044
26
Trabocchi A.
Mancini F.
Menchi G.
Guarna A.
Mol. Diversity
2003,
6:
245
27
Scarpi D.
Stranges D.
Cecchi L.
Guarna A.
Tetrahedron
2004,
60:
2583
28
Danieli E.
Trabocchi A.
Menchi G.
Guarna A.
Eur. J. Org. Chem.
2005,
4372
29
Trabocchi A.
Rolla M.
Menchi G.
Guarna A.
Tetrahedron Lett.
2005,
46:
7813
30 TBDMS-protected 3-amino-1,2-propanediol was obtained in high purity and yield after a two-step process involving reaction of benzylamine with TBDMS-protected glycidol in the presence of LiNTf2 , and subsequent hydrogenation of the benzylic group.
31 The use of anhydride followed by SOCl2 treatment was reported for the preparation of BTG. See: Dienes Z.
Vogel P.
J. Org. Chem.
1996,
61:
6958
32
Reymond J.-L.
Vogel P.
J. Chem. Soc., Chem. Commun.
1990,
1070
33
Reymond J.-L.
Vogel P.
Tetrahedron: Asymmetry
1990,
1:
729
34 Crystallographic data (excluding structure factors) for the structure 110 in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 286087. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(1223)336033 or e-mail: deposit@ccdc.cam.ac.uk].
35
Hanessian S.
Xie F.
Tetrahedron Lett.
1998,
39:
733
36
Christensen T.
Acta Chem. Scand., Ser. B
1979,
33:
763
37 The Bromophenol Blue test is not specific, as it reveals the presence of primary to quaternary amines. See: Krchnák V.
Vágner J.
Safár P.
Lebl M.
Collect. Czech. Chem. Commun.
1988,
53:
2542
38
Furman B.
Thürmer R.
Kaluża Z.
Lysek R.
Voelter W.
Chmielewski M.
Angew. Chem. Int. Ed.
1999,
38:
1121
39
Purandare AV.
Poss MA.
Tetrahedron Lett.
1998,
39:
935
40
Caputo R.
Cassano E.
Longobardo L.
Palumbo G.
Tetrahedron
1995,
51:
12337
41
Yan LZ.
Mayer JP.
J. Org. Chem.
2003,
68:
1161
42
Abdel-Magid AF.
Carson KG.
Harris BD.
Maryanoff CA.
Shah RD.
J. Org. Chem.
1996,
61:
3849
43 This compound was obtained by oxidative cleavage of d -1,2:5,6-di-O -isopropylidene-mannitol with NaIO4 as reported. See: Earle MJ.
Abdur-Rashid A.
Priestley ND.
J. Org. Chem.
1996,
61:
5697
44
Machetti F.
Bucelli I.
Indiani G.
Guarna A.
C. R. Chimie
2003,
6:
631
45
Gellman SH.
Acc. Chem. Res.
1998,
31:
173
46
Hill DJ.
Mio MJ.
Prince RB.
Hughes TS.
Moore JS.
Chem. Rev.
2001,
101:
3893
47
Machetti F.
Ferrali A.
Menchi G.
Occhiato EG.
Guarna A.
Org. Lett.
2000,
2:
3987
48
Chou PY.
Fasman GD.
J. Mol. Biol.
1977,
115:
135
49
Rose GD.
Gierasch LM.
Smith JA.
Adv. Protein Chem.
1985,
37:
1
50
Stanfield RL.
Fieser TM.
Lerner RA.
Wilson IA.
Science
1990,
248:
712
51
Müller G.
Hessler G.
Decornez HY.
Angew. Chem. Int. Ed.
2000,
39:
894
52
Richardson JS.
Adv. Protein Chem.
1981,
34:
167
53
Müller G.
Angew. Chem., Int. Ed. Engl.
1996,
35:
2767
54
Belvisi L.
Gennari C.
Mielgo A.
Potenza D.
Scolastico C.
Eur. J. Org. Chem.
1999,
389
55
Halab L.
Lubell WD.
J. Org. Chem.
1999,
64:
3312
56
Halab L.
Lubell WD.
J. Am. Chem. Soc.
2002,
124:
2474
57
Dumas J.-P.
Germanas JP.
Tetrahedron Lett.
1994,
35:
1495
58
Kim K.
Germanas JP.
J. Org. Chem.
1997,
62:
2847
59
Cumberbatch S.
North M.
Zagotto G.
Tetrahedron
1993,
49:
9049
60
An SSA.
Lester CC.
Peng J.-L.
Li Y.-J.
Rothwarf DM.
Welker E.
Thannhauser TW.
Zhang LS.
Tam JP.
Scheraga HA.
J. Am. Chem. Soc.
1999,
121:
11558
61
Keller M.
Sager C.
Dumy P.
Schutkowsky M.
Fischer GS.
Mutter M.
J. Am. Chem. Soc.
1998,
120:
2714
62
Brady SF.
Paleveda WJ.
Arison BH.
Saperstein R.
Brady EJ.
Raynor K.
Reisine T.
Veber DF.
Freidinger RM.
Tetrahedron
1993,
49:
3449
63
Sukumaran DK.
Prorok M.
Lawrence DS.
J. Am. Chem. Soc.
1991,
113:
706
64
Zabrocki J.
Smith GD.
Dunbar JB.
Marshall GR.
J. Am. Chem. Soc.
1988,
110:
5875
65
Souers AJ.
Virgilio AA.
Schürer SS.
Ellman JA.
Kogan TP.
West HE.
Ankener W.
Vanderslice P.
Bioorg. Med. Chem. Lett.
1998,
8:
2297
66
Cho N.
Harada M.
Imaeda T.
Imada T.
Matsumoto H.
Hayase Y.
Sasaki S.
Furuya S.
Suzuki N.
Okubo S.
Ogi S.
Endo S.
Onda H.
Fujino M.
J. Med. Chem.
1998,
41:
4190
67
Souers AJ.
Virgilio AA.
Rosenquist Ĺ.
Fenuik W.
Ellman JA.
J. Am. Chem. Soc.
1999,
121:
1817
68
Virgilio AA.
Ellman JA.
J. Am. Chem. Soc.
1994,
116:
11580
69
Virgilio AA.
Schürer SC.
Ellman JA.
Tetrahedron Lett.
1996,
37:
6961
70
Virgilio AA.
Bray AA.
Zhang W.
Trinh L.
Snyder M.
Morissey M.
Ellman JA.
Tetrahedron
1997,
53:
6635
71
Feng Y.
Wang Z.
Jin S.
Burgess K.
J. Am. Chem. Soc.
1998,
120:
10768
72
Eguchi M.
Lee MS.
Nakanishi H.
Stasiak M.
Lovell S.
Kahn M.
J. Am. Chem. Soc.
1999,
121:
12204
73
Nagai U.
Sato K.
Tetrahedron Lett.
1985,
26:
647
74
Feigel M.
J. Am. Chem. Soc.
1986,
108:
181
75
Diaz H.
Espina JR.
Kelly JW.
J. Am. Chem. Soc.
1992,
114:
8316
76
Genin MJ.
Johnson RL.
J. Am. Chem. Soc.
1992,
114:
8778
77
Jones IG.
Jones W.
North M.
J. Org. Chem.
1998,
63:
1505
78
Holmes DL.
Smith EM.
Nowick JS.
J. Am. Chem. Soc.
1997,
119:
7655
79
Smith EM.
Holmes DL.
Shaka AJ.
Nowick JS.
J. Org. Chem.
1997,
62:
7906
80
Nesloney CL.
Kelly JW.
J. Am. Chem. Soc.
1996,
118:
5836
81
Gardner RR.
Liang G.-B.
Gellman SH.
J. Am. Chem. Soc.
1995,
117:
3280
82
Schneider JP.
Kelly JW.
J. Am. Chem. Soc.
1995,
117:
2533
83
Kemp DS.
Li ZQ.
Tetrahedron Lett.
1995,
36:
4179
84
Gardner B.
Nanashi H.
Khan M.
Tetrahedron
1993,
49:
3433
85
Brandmeier V.
Feigel M.
Angew. Chem., Int. Ed. Engl.
1989,
28:
486 ; Angew. Chem . 1989 , 102 , 466
86
Nowick S.
Smith EM.
Noronha G.
J. Org. Chem.
1995,
60:
7386
87
Nagai U.
Sato K.
Nakamura R.
Kato R.
Tetrahedron
1993,
49:
3577
88
Kemp DS.
Sites WE.
Tetrahedron Lett.
1988,
29:
5057
89
Haque TS.
Gellman SH.
J. Am. Chem. Soc.
1997,
119:
2303
90
Krauthäuser S.
Christianson LA.
Powell DR.
Gellman SH.
J. Am. Chem. Soc.
1997,
119:
11719
91
Hanessian S.
Yang H.
Tetrahedron Lett.
1997,
38:
3155
92
Fink BE.
Kym PR.
Katzenellenbogen JA.
J. Am. Chem. Soc.
1998,
120:
4334
93
Hanessian S.
McNaughton-Smith G.
Lombart H.-G.
Lubell WD.
Tetrahedron
1997,
53:
12789
94
Wishart DS.
Sykes BD.
Richards FM.
J. Mol. Biol.
1991,
222:
311
95
Chang G.
Guida WC.
Still WC.
J. Comput. Chem.
1994,
15:
1302
96
Ball JB.
Hughes RA.
Alewood PF.
Andrews PR.
Tetrahedron
1993,
49:
3467
97
Scarpi D.
Occhiato EG.
Trabocchi A.
Leatherbarrow RJ.
Brauer ABE.
Nievo M.
Guarna A.
Bioorg. Med. Chem.
2001,
9:
1625
98
Trabocchi A.
Occhiato EG.
Potenza D.
Guarna A.
J. Org. Chem.
2002,
67:
7483
99
Trabocchi A.
Potenza D.
Guarna A.
Eur. J. Org. Chem.
2004,
4621
100
Fisk JD.
Powell DR.
Gellman SH.
J. Am. Chem. Soc.
2000,
122:
5443