Abstract
A mild and efficient general method for the deoxygenation of organic N -oxides such as azoxybenzenes, N -arylnitrones, and N -heteroarene N -oxides using Zn(OTf)2 and Cu(OTf)2 in excellent yields is described.
Key words
deoxygenation - metal triflates - nitrones -
N -heteroarene N -oxides - azoxybenzenes
References and Notes
For some selected very recent reports, see:
1a
Ollevier T.
Nadeau E.
J. Org. Chem.
2005,
70:
9292
1b
Deng X.-M.
Sun X.-L.
Tang Y.
J. Org. Chem.
2005,
70:
6537
1c
Yang C.-G.
Reich NW.
Shi Z.
He C.
Org. Lett.
2005,
7:
4553
1d
Nakamura M.
Endo K.
Nakamura E.
Org. Lett.
2005,
7:
3279
1e
Curini M.
Epifano F.
Genovese S.
Marcotullio MA.
Rosati O.
Org. Lett.
2005,
7:
1331
1f
Morris WJ.
Custar DW.
Scheidt KA.
Org. Lett.
2005,
7:
1113
1g
Anderson ED.
Ernat JJ.
Nguyen MP.
Palma AC.
Mohan RS.
Tetrahedron Lett.
2005,
46:
7747
1h
Temelli B.
Unaleroglu C.
Tetrahedron Lett.
2005,
46:
7941
1i
Su W.
Li J.
Zheng Z.
Shen Y.
Tetrahedron Lett.
2005,
46:
6037
1j
Yanai H.
Saito A.
Taguchi T.
Tetrahedron
2005,
61:
7087
1k
De S K.
Gibbs RA.
Tetrahedron Lett.
2005,
46:
1811
1l
Jiang H.
Zhu S.
Tetrahedron Lett.
2005,
46:
517
1m
Liu L.-Y.
Tang L.
Yu L.
Chang W.-X.
Li J.
Tetrahedron
2005,
61:
10930
1n
Cheng K.
Lin L.
Chen S.
Feng X.
Tetrahedron
2005,
61:
9594
1o
Zhang J.
Blazecka PG.
Angell P.
Lovdahl M.
Curran TT.
Tetrahedron
2005,
61:
7807
2 Review: Kobayashi S.
Sugiura M.
Kitgawa H.
Lam WW.-L.
Chem. Rev.
2002,
102:
2227 ; and references cited therein
3a
Kobayashi S.
Synlett
1994,
689
3b
Marshman RW.
Aldrichimica Acta
1995,
28:
77
4a
Kobayashi S.
Chem. Lett.
1991,
2187
4b
Kobayashi S.
Hachiya I.
Tetrahedron Lett.
1992,
33:
1625
4c
Kobayashi S.
Hachiya I.
J. Org. Chem.
1994,
59:
3590
4d
Kobayashi S.
Araki M.
Ishitani H.
Nagayama S.
Hachiya I.
Synlett
1995,
233
4e
Kobayashi S.
Ishitani H.
Komiyama S.
Oniciu DC.
Katritzky AR.
Tetrahedron Lett.
1996,
37:
3731
4f
Kobayashi S.
Araki M.
Yasuda M.
Tetrahedron Lett.
1995,
36:
5773
4g
Kobayashi S.
Basujima T.
Nagayama S.
Synlett
1999,
545
4h
Aspinall HC.
Browning AF.
Greeves N.
Ravenscroft P.
Tetrahedron Lett.
1994,
35:
9283
4i
Kagoshima H.
Hashimoto Y.
Saigo K.
Tetrahedron Lett.
1998,
39:
8465
4j
Shen Y.
Qi M.
J. Chem. Res., Synop.
1993,
222
5a
Kobayashi S.
Hachiya I.
Araki M.
Ishitani H.
Tetrahedron Lett.
1993,
34:
3755
5b
Kobayashi S.
Hachiya I.
Takahori T.
Araki M.
Ishitani H.
Tetrahedron Lett.
1992,
33:
6815
5c
Kobayashi S.
Ishitani H.
Nagayama S.
Chem. Lett.
1995,
423
5d
Kobayashi S.
Ishitani H.
Nagayama S.
Synthesis
1995,
1195
5e
Batey RA.
Simoncic PD.
Lin D.
Smyj RP.
Lough AJ.
Chem. Commun.
1999,
651
5f
Gothelf KV.
Hazell RG.
Jørgensen KA.
J. Org. Chem.
1996,
61:
346
5g
Sanchez-Blanco AI.
Gothelf KV.
Jørgensen KA.
Tetrahedron Lett.
1997,
38:
7923
5h
Minakata S.
Ezoe T.
Nakamura K.
Ryu I.
Komatsu M.
Tetrahedron Lett.
1998,
39:
5205
5i
Kobayashi S.
Akiyama R.
Kawaura M.
Ishitani H.
Chem. Lett.
1997,
1039
6a
Barrett AGM.
Braddock DC.
McKinnell RM.
Waller FJ.
Synlett
1999,
1489
6b
Kotsuki H.
Arimura K.
Araki T.
Shinohara T.
Synlett
1999,
462
6c
Tsuda A.
Osuka A.
Science (Washington, D.C.)
2001,
293:
79
7a
Kamachi Y.
Kudo T.
Tetrahedron Lett.
2000,
41:
341
7b
Castellani CB.
Carugo O.
Perotti A.
Sacchi D.
Invernizzi AG.
Vidari G.
J. Mol. Catal.
1993,
85:
65
7c
Gillespie KM.
Munslow IJ.
Scott P.
Tetrahedron Lett.
1999,
40:
9371
8a
Gadwal S.
Sandhu JS.
J. Chem. Soc., Perkin Trans. 1
2000,
2827
8b
Laskar DD.
Prajapati D.
Sandhu JS.
Tetrahedron Lett.
2000,
41:
8639
8c
Barman DC.
Gohain M.
Prajapati D.
Sandhu JS.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
2002,
41:
154
9a
Ochiai E. In Aromatic Amine Oxides
Elsevier;
Amsterdam:
1967.
p.184
9b
Hisahiro H.
Hideyuki I.
Masakazu F.
Takashi H.
Toshio S.
Synlett
2005,
2388
10a
Hamer J.
Macaluso A.
Chem. Rev.
1964,
64:
473
10b
Padwa A.
1,3-Dipolar Cycloaddition Chemistry
Vol. I:
Wiley-Interscience;
New York:
1984.
10c
Padwa A.
1,3-Dipolar Cycloaddition Chemistry
Vol II:
Wiley-Interscience;
New York:
1984.
11a
Nicolaou KC.
Koumbis AE.
Snyder SA.
Simosen KB.
Angew. Chem. Int. Ed.
2000,
41:
2663
11b
Chandrashekhar S.
Reddy CR.
Rao JM.
Synlett
2002,
349
12
Barton DHR.
Fekih A.
Lusinchi X.
Tetrahedron Lett.
1985,
26:
4603
13a
Olah GA.
Gupta BGB.
Narang SC.
J. Org. Chem.
1978,
43:
4503
13b
Howard E.
Olszewski WF.
J. Am. Chem. Soc.
1959,
81:
1483
13c
Lunn G.
Sansone EB.
Keefer LK.
Synthesis
1985,
1104
14a
Bjorsvik H.-R.
Gambarotti C.
Jensen VR.
Gonzalez RR.
J. Org. Chem.
2005,
70:
3218 ; and references cited therein
14b
Bjorsvik H.-R.
Conzalez RR.
Liguori L.
J. Org. Chem.
2004,
69:
7720
14c
Baliki R.
Chem. Ber.
1990,
647
14d
Malinoswaki M.
Synthesis
1987,
732
15a
Hwu JR.
Tseng WN.
Patel HV.
Wong FF.
Horng D.-N.
Liaw BR.
Lin LC.
J. Org. Chem.
1999,
61:
2211
15b
Naumann K.
Zon G.
Mislow K.
J. Am. Chem. Soc.
1969,
91:
7012
15c
Vorbrüggen H.
Krolikiewicz K.
Tetrahedron Lett.
1983,
24:
5337
16a
Kano S.
Tanaka Y.
Hibino S.
Heterocycles
1980,
14:
39
16b
Kano S.
Tanaka Y.
Sugino E.
Hibino S.
Synthesis
1980,
695
17a
Kozuka S.
Akasaka T.
Furumai S.
Chem. Ind. (London)
1924,
452
17b
Jousseaume B.
Chanson E.
Synthesis
1987,
55
17c
Newumann WP.
Heymann E.
Ann. Chem.
1965,
683:
24
18
Ilias M.
Barman DC.
Prajapati D.
Sandhu JS.
Tetrahedron Lett.
2002,
43:
1877
19a
Abramovitch RA.
Saha JG.
Adv. Heterocycl. Chem.
1966,
6:
229
19b
Grimmett MR.
Adv. Heterocycl. Chem.
1993,
58:
271
19c
Morimoto Y.
Kurihara H.
Yokoe C.
Kinoshita T.
Chem. Lett.
1989,
829
20
Roberto S.
Jaime E.
Yolanda F.
Rafael A.
Maria RP.
Francisco JA.
Synlett
2005,
1389
21
Jeevanandam A.
Ling Y.-C.
Tetrahedron Lett.
2001,
42:
4361
22
Kalyanam N.
Rao GV.
Tetrahedron Lett.
1993,
34:
1647
23 Explosions have been reported if the reagents are mixed in the wrong order, see: Vorbrüggen H.
Krolikiewicz K.
Tetrahedron Lett.
1983,
24:
5337
24
Deoxygenation of Nitrones; Typical Procedure
To a stirred solution of benzaldehyde N -phenylnitrone (3a , 0.39 g, 2 mmol) in CH3 CN (15 mL) was added Zn(OTf)2 (2 mmol, 1 equiv) and the resulting mixture was stirred at 80 °C for 70 min. After completion of the reaction (monitored by TLC), the solvent was removed under reduced pressure, and the residue was treated with H2 O (3 × 30 mL). The resultant mixture was extracted with CH2 Cl2 , the organic layer was dried (Na2 SO4 ), and the solvent removed by distillation to give the crude product, which was purified by column chromatography (silica, hexane-EtOAc) to afford benzylidine aniline 4a , in 74% yield; mp 51-52 °C (Lit.26 mp 52 °C). 1 H NMR (200 MHz): δ = 8.35 (s, 1 H, CH=N), 7.30-7.60 (m, 10 H, Ar). 13 C NMR (50 MHz): δ = 122.0, 12.3, 127.0, 128.4, 128.6, 129.0, 129.1, 129.6, 129.8, 130.8, 131.2, 153.2 (Ar), 163.4 (CH).
25
Vogel AI.
A Textbook of Practical Organic Chemistry
3rd ed.:
Longmans;
London:
1956.
26
Sekiya M.
Chem. Pharm. Bull.
1970,
18:
2146
27
Bigelow LA.
Eatough H.
Org. Synth., Coll. Vol. I
Wiley;
New York:
1941.
p.80
28
Dictionary of Organic Compounds
4th ed.:
Pollock JRA.
Stevens R.
Eyre & Spottiswoode;
London:
1965.
29
Beilsteins Handbuch der Organischen Chemie
4th ed.:
H 12:
p.199
30
Hantzsch A.
Ber. Dtsch. Chem. Ges.
1901,
34:
822
31
Deoxygenation of Heteroarene
N
-Oxides: Typical Procedure
To a stirred solution of pyridine N -oxide (5a , 0.19g, 2 mmol) in CH3 CN (15 mL) was added Zn(OTf)2 (2 mmol, 1 equiv) and the resulting mixture was stirred at 80 °C for 60 min. The solvent was removed under reduced pressure and H2 O (50 mL) was added. The pH was adjusted to >7 by the addition of 25% aq NH3 and the product extracted with Et2 O (3 × 50 mL). The organic layer was dried (Na2 CO3 ) and evaporated to give the crude product, which after purification afforded pyridine 6a in 89% yield; bp 113-115 °C (Lit.27 bp 115.5 °C); picrate mp 163-164 °C (Lit.27 mp 164-65 °C). 1 H NMR (200 MHz): δ = 7.20 (dd, 2 H, J = 8.2 Hz), 7.55 (dd, 1 H, J = 8.2 Hz), 8.50 (d, 2 H, J = 6.2 Hz). 13 C NMR (50 MHz): δ = 123.2, 123.7, 135.4, 149.6, 149.7.