Abstract
The first synthesis of four new naturally occurring remotely functionalized secondary mould metabolite anhydrides 1a -d is described starting from N -p -tolyl citraconimide (5 ) in three to six steps and 20-65% overall yields. The condensation of triphenylphosphine-maleimide adduct 6 with aldehyde 4 furnished the exo -imide 7 , which after isomerization, hydrolysis, and acylation gave aspergillus acid A (1a ) in 54% overall yield in four steps. The condensation of adduct 6 with aldehyde 15 similarly afforded the desired imide 17 in two steps. The acid-catalyzed hydrolysis of imide 17 directly furnished aspergillus acid B (1b ), exposing the latent methyl ketone present as the terminal acetylene. Sodium borohydride induced chemoselective reduction of aspergillus acid B (1b ) gave aspergillus acid C (1c ), which upon acetic anhydride induced acylation, furnished aspergillus acid D (1d ). A facile Amano PS catalyzed acylation of aspergillus acid C (1c ) gave, in good yield, the desired (+)-aspergillus acid C (1e ) in 70% ee and (-)-aspergillus acid D (1f ) in 72% ee. In the present enzymatic reaction, the anhydride moiety presumably plays a crucial role in the substrate recognition, binding, and resolution process.
Key words
citraconimide - Wittig condensation - chemoselective reduction - aspergillus acid - enzymatic resolution
References 1 NCL Communication No. 6686.
2
Adlington RM.
Baldwin JE.
Cox RJ.
Pritchard GJ.
Synlett
2002,
820 ; and references cited therein
3
Nicolaou KC.
Baran PS.
Zong Y.-L.
Fong KC.
He Y.
Yoon WH.
Choi H.-S.
Angew. Chem. Int. Ed.
1999,
38:
1676 ; and references cited therein
4
Singh SB.
Jayasuriya H.
Silverman KC.
Bonfiglio CA.
Williamsons JM.
Lingham RB.
Bioorg. Med. Chem.
2000,
8:
571
5
Wong KC.
Tan GL.
Flavour Fragrance J.
1994,
9:
25
6
Boesel R.
Schilcher H.
Planta Med.
1989,
55:
399
7
Poll L.
Lewis MJ.
Lebensm.-Wiss. Technol.
1986,
19:
258
8
Singh SB.
Zink DL.
Liesch JM.
Goetz MA.
Jenkins RG.
Nallin-Omstead M.
Silverman KC.
Bills GF.
Mosley RT.
Gibbs JB.
Albers-Schonberg G.
Lingham RB.
Tetrahedron
1993,
49:
5917
9
Assante G.
Camarda L.
Merlini L.
Nasini G.
Gazz. Chim. Ital.
1979,
109:
151
10a
Cheng X.-C.
Kihara T.
Kusakabe H.
Magae J.
Kobayashi Y.
Fang R.-P.
Ni Z.-F.
Shen Y.-C.
Ko K.
Yamaguchi I.
Isono K.
J. Antibiot.
1987,
40:
907
10b
Cheng X.-C.
Ubukata M.
Isono K.
J. Antibiot.
1990,
43:
890
10c
Cheng X.-C.
Ubukata M.
Isono K.
J. Antibiot.
1990,
43:
809
11
Weber W.
Semar M.
Anke T.
Bross M.
Steglich W.
Planta Med.
1992,
58:
56
12
Zhang C.-F.
Nakamura N.
Tewtrakul S.
Hattori M.
Sun Q.-S.
Wang Z.-T.
Fujiwara T.
Chem. Pharm. Bull.
2002,
50:
1195
13
Adeboya MO.
Edwards RL.
Laessoe T.
Maitland DJ.
Whalley AJS.
Liebigs Ann. Chem.
1996,
1437
14
Miyagawa H.
Hamada N.
Sato M.
Ueno T.
Phytochemistry
1994,
36:
1319
15
Kinoshira K.
Nakajima S.
Chem. Pharm. Bull.
1958,
6:
31
16
Singh SB.
Tetrahedron Lett.
1993,
34:
6521
17a
Ratemi ES.
Dolence JM.
Poulter CD.
Vederas JC.
J. Org. Chem.
1996,
61:
6296
17b
Kates MJ.
Schauble JH.
J. Org. Chem.
1996,
61:
4164
17c
Desai SB.
Argade NP.
J. Org. Chem.
1997,
62:
4862
17d
Deshpande AM.
Natu AA.
Argade NP.
J. Org. Chem.
1998,
63:
9557
17e
Kar A.
Argade NP.
J. Org. Chem.
2002,
67:
7131 ; and references cited therein, in particular 17a-e
18
Buyck LD.
Cagnoli R.
Ghelfi F.
Merighi G.
Mucci A.
Pagnoni UM.
Parsons AF.
Synthesis
2004,
1680
19
Mau CJD.
Garneau S.
Scholte AA.
Van Fleet JE.
Vederas JC.
Cornish K.
Eur. J. Biochem.
2003,
270:
3939
20a
Gogoi S.
Argade NP.
Tetrahedron
2004,
60:
9093
20b
Mondal M.
Argade NP.
Tetrahedron Lett.
2004,
45:
5693
20c
Mondal M.
Argade NP.
Synlett
2004,
1243
20d
Mangaleswaran S.
Argade NP.
Synthesis
2004,
1560
20e
Mhaske SB.
Argade NP.
Tetrahedron
2004,
60:
3417
20f
Argade NP.
Balasubramaniyan V.
Heterocycles
2000,
53:
475 ; and references cited therein, in particular 20a-f
21a
Easwar S.
Argade NP.
Tetrahedron: Asymmetry
2003,
14:
333
21b
Easwar S.
Desai SB.
Argade NP.
Ganesh KN.
Tetrahedron: Asymmetry
2002,
13:
1367
21c
Desai SB.
Argade NP.
Ganesh KN.
J. Org. Chem.
1999,
64:
8105
21d
Desai SB.
Argade NP.
Ganesh KN.
J. Org. Chem.
1996,
61:
6730
22
Hedaya E.
Theodoropulos S.
Tetrahedron
1968,
24:
2241
23a
Kim YH.
Park DH.
Byun IS.
Yoon IK.
Park CS.
J. Org. Chem.
1993,
58:
4511
23b
Yamamoto K.
Ueno K.
Naemura K.
J. Chem. Soc., Perkin Trans. 1
1991,
2607
23c
Nishiyama H.
Kondo M.
Nakamura T.
Itoh K.
Organometallics
1991,
10:
500
23d
Imai T.
Tamura T.
Yamamuro A.
Sato T.
Wollmann TA.
Kennedy RM.
Masamune S.
J. Am. Chem. Soc.
1986,
108:
7402
23e
Noyori R.
Tomino I.
Nishizawa M.
J. Am. Chem. Soc.
1984,
106:
6709
23f
Mukaiyama T.
Tetrahedron
1981,
37:
4111
24
Anderson BA.
Hansen MM.
Harkness AR.
Henry CL.
Vicenzi JT.
Zmijewski MJ.
J. Am. Chem. Soc.
1995,
117:
12358
25a
Fronza G.
Grasselli P.
Mele A.
Fuganti C.
J. Org. Chem.
1991,
56:
6019
25b
Cai Z.-Y.
Ni Y.
Sun J.-K.
Yu X.-D.
Wang Y.-Q.
J. Chem. Soc., Chem. Commun.
1985,
1277
26a
Dale JA.
Dull DL.
Mosher HS.
J. Org. Chem.
1969,
34:
2543
26b
Dale JA.
Mosher HS.
J. Am. Chem. Soc.
1973,
95:
512
27a
Schmid RD.
Verger R.
Angew. Chem., Int. Ed. Engl.
1997,
37:
1608
27b
Kazlauskas RJ.
Bornscheuer UT.
Biotechnology-Series
Vol. 8a:
VCH-Wiley;
Weinheim:
1998.
p.37
27c
Theil F.
Chem. Rev.
1995,
95:
2203
27d
Mori K.
Synlett
1995,
1097
27e
Wong C.-H.
Whitesides GM.
Enzymes in Organic Chemistry
Pergamon;
New York: 1994; and references cited therein, in particular 27a-e
28
Dupuis C.
Corre C.
Boyaval P.
Appl. Environ. Microbiol.
1993,
59:
4004
29
Ogawa Y.
Nakamura N.
Bull. Chem. Soc. Jpn.
1999,
72:
943