Abstract
A one-pot procedure was developed for the synthesis of 3-chloro-3-arylpropanols, which are important starting materials for the synthesis of biologically active benzanilide derivatives. Styrenes were reacted with methylene diacetate in the presence of boron trifluoride to give the corresponding 3-chloro-3-arylpropanols in 36-84% yield by the Prins reaction. A strongly electron-donating methoxy substituent at either the ortho or para position of the styrene did not give the expected 3-chloro-3-arylpropanols due to polymerization. Styrene with a strongly electron-withdrawing nitro substituent gave the corresponding 3-chloro-3-arylpropanol in very low yield. Under the same reaction conditions, substituted norbornene gave a tricyclic ether. A very easy procedure for the synthesis of methylene diacetate is also reported.
Key words
Prins reactions - ethers - Lewis acids - arylpropanols
References
Reviews:
1a
Arundale E.
Mikeska LA.
Chem. Rev.
1952,
51:
505
1b
Adams RD.
Bhatnagar SP.
Synthesis
1977,
661
1c
Snider BB. In Comprehensive Organic Synthesis
Trost BM.
Flemming I.
Pergamon;
New York:
1991.
Vol. 2:
p.527
2a
Sauers RR.
Sonnet PE.
J. Org. Chem.
1964,
29:
754
For the synthesis of similar structures by different methods, see:
2b
Mayr H.
Pock R.
Klein H.
Chem. Ber.
1986,
119:
929
2c
Nakazaki M.
Naemura K.
Kadowaki H.
J. Org. Chem.
1976,
23:
3725
3
Wu Y.
Zhang J.
Huaxue Xuebao
1982,
40:
157
4a
Ferrand G.
Huet J.
Bull. Soc. Chim. Fr.
1973,
3122
4b
Ferrand G.
Huet J.
Bull. Soc. Chim. Fr.
1975,
351
4c
Ferrand G.
Huet J.
Bull. Soc. Chim. Fr.
1975,
356
4d
Ferrand G.
Huet J.
Bull. Soc. Chim. Fr.
1975,
1709
5
Isleyen A.
Sayrac T.
Dogan .
Z. Naturforsch., B: Chem. Sci.
2004,
59:
109
6a
Stapp PR.
Weinberg DS.
J. Org. Chem.
1969,
34:
3592
6b
Stapp PR.
J. Org. Chem.
1969,
34:
479
7
Yoshida K.
Horikoshi Y.
Eta M.
Chikazawa MO.
Fukuda Y.
Sato H.
Bioorg. Med. Chem. Lett.
1998,
8:
2967
8 Structural assignment of compound 2 was based on 1 H, 13 C NMR, COSY (W coupling between H-2
endo
and H-6), and HMBC spectra (correlation between C-3 and H-8
endo
,
exo
, C-3 and H-2
endo
, C-9 and H-2
endo
,
exo
, and C-2 and H-9).
9
Holmberg K.
Hansen B.
Tetrahedron Lett.
1975,
16:
2303
For the synthesis of MDA by different methods, see:
10a
Butlerow A.
Justus Liebigs Ann. Chem.
1858,
107:
111
10b
Butlerow A.
Justus Liebigs Ann. Chem.
1859,
111:
243
10c
Descude M.
Bull. Soc. Chim. Fr.
1902,
871
10d
Wegscheider R.
Monatsh. Chem.
1909,
30:
841
10e
Knoevenagel E.
Justus Liebigs Ann. Chem.
1913,
402:
134
10f
Bryson TA.
Synth. Commun.
1972,
2:
361
10g
Bigler P.
Helv. Chim. Acta
1978,
61:
2059
10h
Sugawara M.
Baizer MM.
Tetrahedron Lett.
1983,
24:
2223
10i
Griesbaum K.
Greunig H.-J.
Volpp W.
Jung I.-C.
Chem. Ber.
1991,
124:
947
10j
Sugawara M.
Baizer MM.
Monte WT.
Little RD.
Hess U.
Acta Chem. Scand., Ser. B
1983,
37:
509
11
Mayo P.
Orlova G.
Goddard JD.
Tam W.
J. Org. Chem.
2001,
66:
5182
12
Bach T.
Löbel J.
Synthesis
2002,
2521
13
Matsui M.
Ko J.
Hepler K.
Can. J. Chem.
1974,
52:
2906
14 Substituent constant is taken from: Exner O. In Correlation Analysis in Chemistry
Chapman NB.
Shorter J.
Plenum Press;
New York:
1978.
15a
Shorygina NV.
Zh. Obshch. Khim.
1956,
26:
1460
15b
Cerveny L.
Marhoul A.
Ruzicka V.
Chem. Prum.
1980,
30:
127
16a
Olavi P.
Virtanen I.
Manninen K.
Suom. Kemistil. B
1967,
40:
341
16b
Searles S.
Pollart KA.
Block F.
J. Am. Chem. Soc.
1957,
79:
952