Planta Medica, Inhaltsverzeichnis Planta Med 2006; 72(9): 786-791DOI: 10.1055/s-2006-931607 Original PaperPharmacology© Georg Thieme Verlag KG Stuttgart · New YorkDeoxypodophyllotoxin (DPT) Inhibits Eosinophil Recruitment into the Airway and Th2 Cytokine Expression in an OVA-Induced Lung InflammationChang Xin Lin1 , Eunkyung Lee1 , Mei Hua Jin1 , Jumin Yook1 , Zhejiu Quan1 , Kyungmi Ha1 , Tae Chul Moon1 , Mi Jin Kim2 , Keuk Jun Kim2 , Seung Ho Lee1 , Hyeun Wook Chang1 1College of Pharmacy, Yeungnam University, Gyongsan, Korea 2Department of Pathology, College of Medicine, Yeungnam University, Daegu, Korea Artikel empfehlen Abstract Artikel einzeln kaufen(opens in new window) Abstract The effect of deoxypodophyllotoxin (DPT) isolated from Anthriscus sylvestris Hoffm. was evaluated in an in vivo animal model for antiasthmatic activity. DPT (1.0 to 5 mg/kg) was given orally to ovalbumin (OVA)/alum-induced asthmatic mice. DPT reduced the number of infiltrated eosinophils in bronchoalveolar lavage (BAL) fluid in a dose-dependent manner. Dexamethasone (5 mg/kg), which was used as a positive control, also strongly inhibited the number of infiltrated eosinophils. The effect of DPT on a transcript profile in a murine asthma model was determined by RT-PCR, which showed that DPT decreased the mRNA levels of the Th2 cytokines. Northern blot analysis showed that DPT also reduced both the eotaxin and arginase I mRNA levels in a dose-dependent manner. Key words Deoxypodophyllotoxin (DPT) - eosinophils - bronchoalveolar lavage (BAL) - asthma - Th2 cytokines Volltext Referenzen References 1 Holgate S T. The epidemic of allergy and asthma. Nature. 1999; 402 B2-4 2 Umetsu D T, McIntire J J, Akbari O, Macaubas C, DeKruyff R H. Asthma: an epidemic of dysregulated immunity. Nat Immunol. 2002; 3 715-20 3 Renauld J C. New insights into the role of cytokines in asthma. J Clin Pathol. 2001; 54 577-89 4 Ikeda R, Nagao T, Okabe H, Nakano Y, Matsunaga H, Katano M. et al . Antiproliferative constituents in Umbelliferae plants. III. Constituents in the root and the ground part of Anthriscus sylvestris Hoffm. Chem Pharm Bull (Tokyo). 1998; 46 871-4 5 Masuda T, Oyama Y, Yonemori S, Takeda Y, Yamazaki Y, Mizuguchi S. et al . Flow cytometric estimation on cytotoxic activity of leaf extracts from seashore plants in subtropical Japan: isolation, quantification and cytotoxic action of (-)-deoxypodophyllotoxin. Phytother Res. 2002; 16 353-8 6 Kim Y, Kim S B, You Y J, Ahn B Z. Deoxypodophyllotoxin; the cytotoxic and antiangiogenic component from Pulsatilla koreana . Planta Med. 2002; 68 271-4 7 Sudo K, Konno K, Shigeta S, Yokota T. Inhibitory effects of podophyllotoxin derivatives on Herpes simplex virus replication. Antivir Chem Chemother. 1998; 9 263-7 8 Lin C X, Son M J, Ju H K, Moon T C, Lee E, Kim S H. et al . Deoxypodophyllotoxin, a naturally occurring lignan, inhibits the passive cutaneous anaphylaxis reaction. Planta Med. 2004; 70 474-6 9 Boguchi D E, Charlton S L. An asymmetric synthesis of (-)-deoxypodophyllotoxin. J Org Chem. 1995; 60 588-93 10 Hasegawa S, Hirose Y. A diterpene glycoside and lignans from seed of Thujopsis dolabrata . Phytochemistry. 1980; 19 2479-81 11 Sato T, Saito R, Jinushi T, Tsuji T, Matsuzaki J, Koda T. et al . IFN-gamma-induced SOCS-1 regulates STAT6-dependent eotaxin production triggered by IL-4 and TNF-alpha. Biochem Biophys Res Commun. 2004; 314 468-75 12 Morrison A C, Correll P H. Activation of the stem cell-derived tyrosine kinase/RON receptor tyrosine kinase by macrophage-stimulating protein results in the induction of arginase activity in murine peritoneal macrophages. J Immunol. 2002; 168 853-60 13 Que L G, Kantrow S P, Jenkinson C P, Piantadosi C A, Huang Y C. Induction of arginase isoforms in the lung during hyperoxia. Am J Physiol. 1998; 275 L96-102 14 Munder M, Eichmann K, Moran J M, Centeno F, Soler G, Modolell M. Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol. 1999; 163 3771-7 15 Wei L H, Jacobs A T, Morris Jr S M, Ignarro L J. IL-4 and IL-13 upregulate arginase I expression by cAMP and JAK/STAT6 pathways in vascular smooth muscle cells. Am J Physiol Cell Physiol. 2000; 279 C248-56 16 Leung D Y, Bloom J W. Update on glucocorticoid action and resistance. J Allergy Clin Immunol. 2003; 111 3-22 17 Tinkelman D G, Reed C E, Nelson H S, Offord K P. Aerosol beclomethasone dipropionate compared with theophylline as primary treatment of chronic, mild to moderately severe asthma in children. Pediatrics. 1993; 92 64-77 18 Lee S H, Son M J, Ju H K, Lin C X, Moon T C, Choi H G. et al . Dual inhibition of cyclooxygenases-2 and 5-lipoxygenase by deoxypodophyllotoxin in mouse bone marrow-derived mast cells. Biol Pharm Bull. 2004; 27 786-8 19 Wills-Karp M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol. 1999; 17 255-81 20 Romagnani S. The role of lymphocytes in allergic disease. J Allergy Clin Immunol. 2000; 105 399-408 21 Bousquet J, Chanez P, Lacoste J Y, Barneon G, Ghavanian N, Enander I. et al . Eosinophilic inflammation in asthma. N Engl J Med. 1990; 323 1033-9 22 Nagai T, Arai Y, Emori M, Nunome S Y, Yabe T, Takeda T. et al . Anti-allergic activity of a Kampo (Japanese herbal) medicine ”Sho-seiryu-to (Xiao-Qing-Long-Tang)” on airway inflammation in a mouse model. Int Immunopharmacol. 2004; 4 1353-65 23 Mishra A, Weaver T E, Beck D C, Rothenberg M E. Interleukin-5-mediated allergic airway inflammation inhibits the human surfactant protein C promoter in transgenic mice. J Biol Chem. 2001; 276 8453-9 24 Collins P D, Marleau S, Griffiths-Johnson D A, Jose P J, Williams T J. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo . J Exp Med. 1995; 182 1169-74 25 Mould A W, Ramsay A J, Matthaei K I, Young I G, Rothenberg M E, Foster P S. The effect of IL-5 and eotaxin expression in the lung on eosinophil trafficking and degranulation and the induction of bronchial hyperreactivity. J Immunol. 2000; 164 2142-50 26 Drazen J M, Arm J P, Austen K F. Sorting out the cytokines of asthma. J Exp Med. 1996; 183 1-5 27 Ray A, Cohn L. Th2 cells and GATA-3 in asthma: new insights into the regulation of airway inflammation. J Clin Invest. 1999; 104 985-93 28 Morris Jr S M. Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr. 2002; 22 87-105 29 Elias J A, Zhu Z, Chupp G, Homer R J. Airway remodeling in asthma. J Clin Invest. 1999; 104 1001-6 30 Louis C A, Mody V, Henry Jr W L, Reichner J S, Albina J E. Regulation of arginase isoforms I and II by IL-4 in cultured murine peritoneal macrophages. Am J Physiol. 1999; 276 R237-42 31 Wills-Karp M. IL-12/IL-13 axis in allergic asthma. J Allergy Clin Immunol. 2001; 107 9-18 32 Zimmermann N, King N E, Laporte J, Yang M, Mishra A, Pope S M. et al . Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest. 2003; 111 1863-74 33 Lim Y H, Leem M J, Shin D H, Chang H B, Hong S W, Moon E Y. et al . Cytotoxic constituents from the roots of Anthriscus sylvestris . Arch Pharm Res. 1999; 22 208-12 Prof. Hyeun Wook Chang College of Pharmacy Yeungnam University Gyongsan 712-749 Korea Telefon: +82-53-810-2811 Fax: +82-53-810-4654 eMail: hwchang@yumail.ac.kr