References and Notes
1a
Belser P.
von Zelewsky A.
Helv. Chim. Acta
1980,
63:
1675
1b
Wu F.
Thummel RP.
Inorg. Chim. Acta
2002,
327:
26
2
Jahng Y.
Hazelrigg J.
Kimball D.
Riesgo E.
Wu F.
Thummel RP.
Inorg. Chem.
1997,
36:
5390
3a
Sjögren M.
Hansson S.
Norrby P.-O.
Åkermark B.
Organometallics
1992,
11:
3954
3b
Sjögren MPT.
Hansson S.
Åkermark B.
Organometallics
1994,
13:
1963
4a
Tanaka Y.
Sekita A.
Suzuki H.
Yamashita M.
Oshikawa O.
Yonemitsu T.
Torii A.
J. Chem. Soc., Perkin Trans. 1
1998,
2471
4b
Watanabe M.
Suzuki H.
Tanaka Y.
Ishida T.
Oshikawa T.
Torii A.
J. Org. Chem.
2004,
69:
7794
5a
Baudouin O.
Teulade-Fichou M.-P.
Vigneron J.-P.
Lehn J.-M.
Chem. Commun.
1998,
2349
5b
Baudouin O.
Marchand C.
Teulade-Fichou M.-P.
Vigneron J.-P.
Sun J.-S.
Garestier T.
Hélène C.
Lehn J.-M.
Chem. Eur. J.
1998,
4:
1504
5c
Mergny J.-L.
Lacroix L.
Teulade-Fichou M.-P.
Hounsou C.
Guittat L.
Hoarau M.
Arimondo PB.
Vigneron J.-P.
Lehn J.-M.
Riou J.-F.
Garestier T.
Hélène C.
Proc. Natl. Acad. Sci. U.S.A.
2001,
98:
3062
5d
Teulade-Fichou M.-P.
Perrin D.
Boutorine A.
Vigneron J.-P.
Lehn J.-M.
Sun J.-S.
Garestier T.
Hélène C.
J. Am. Chem. Soc.
2001,
123:
9283
6a
Teulade-Fichou M.-P.
Carrasco C.
Bailly C.
Alberti P.
Mergny J.-L.
David A.
Lehn J.-M.
Wilson WD.
J. Am. Chem. Soc.
2003,
125:
4732
6b
Baudouin O.
Teulade-Fichou M.-P.
Vigneron J.-P.
Lehn J.-M.
J. Org. Chem.
1997,
62:
5458
7
De Feyter S.
Gesquiere A.
de Schryver FC.
Keller U.
Müllen K.
Chem. Mater.
2002,
14:
989
8
Jabbour JE.
Shaheen SE.
Wang JF.
Morrell MM.
Kippelen B.
Peyghambarian N.
Appl. Phys. Lett.
1997,
70:
1665
9
Smith JA.
West RM.
Allen M.
J. Fluorescence
2004,
14:
151
Others less straightforward routes towards quinacridines have been described, see:
10a
Seli ST.
Mohan PS.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
2000,
39:
703
10b
Gogte VN.
Mullick GB.
Tilak BD.
Indian J. Chem.
1974,
12:
1324
11
Thummel RP.
Lefoulon F.
J. Org. Chem.
1985,
50:
666
12a
Hu Y.-Z.
Zhang G.
Thummel RP.
Org. Lett.
2003,
5:
2251
12b
Viau L.
Sénéchal K.
Maury O.
Guégan J.-P.
Dupau P.
Toupet L.
Le Bozec H.
Synthesis
2003,
577
On this reaction applied to acridine synthesis, see:
13a
Veverková E.
Nosková M.
Toma Š.
Synth. Commun.
2002,
32:
729
13b
Seijas JA.
Vázquez-Tato M.-P.
Montserrat Martinez M.
Rodriguez-Parga J.
Green Chem.
2002,
4:
390
13c
Koshima H.
Kutsunai K.
Heterocycles
2002,
57:
1299
14
Jacquelin C.
Saettel N.
Hounsou C.
Teulade-Fichou M.-P.
Tetrahedron Lett.
2005,
46:
2589
15
Ames DE.
Opalko A.
Tetrahedron
1984,
40:
1919
16
Csuk R.
Barthel A.
Raschke C.
Tetrahedron
2004,
60:
5737
17
General Procedure.
In freshly distilled and degassed toluene (20 mL) was placed Pd(OAc)2 (5% molar) under an inert atmosphere. Then tri-tert-butylphosphine was added (15%) and the solution was allowed to stir 10 min. Dibromobenzene derivative (5 mmol), methyl anthranilate derivative (12 mmol) and Cs2CO3 (15 mmol) were successively added. After overnight reflux, crude mixture was allowed to cool and was then quenched by 50 mL NH4Cl (1 M) solution. About 100 mL CH2Cl2 were added and the biphasic mixture separated. The aqueous phase was extracted twice by CH2Cl2. Organic phases were dried on Na2SO4 and evaporated to dryness. The resulting brown oil was purified by column chromatography, using an CH2Cl2-n-hexane (1:1) mixture as eluant, affording a yellow powder.
Spectroscopic data for selected compounds.
Compound 5: yellow solid; mp 85-88 °C; R
f
= 0.35 (CH2Cl2-n-hexane, 1:1). 1H NMR (DMSO-d
6): δ = 9.47 (s, 1 H), 9.33 (s, 1 H), 7.89 (dd, J = 1.8, 8.1 Hz, 1 H), 7.71 (s, 1 H), 7.41 (s, 1 H), 7.26 (s, 4 H), 7.13-7.23 (m, 3 H), 6.75-6.80 (m, 1 H), 3.86 (s, 3 H), 3.85 (s, 3 H), 2.23 (s, 3 H). 13C NMR (DMSO-d
6): δ = 168.6, 148.0, 145.2, 137.2, 135.8, 134.8, 131.8, 131.3, 126.7, 124.2, 123.1, 117.6, 115.0, 114.0, 112.3, 111.8, 52.4, 20.1. DCI-MS: m/z (%) = 391 (100), 392 (26), 393 (5).
Coumpound 6b: yellow solid; mp 97-98 °C; R
f
= 0.37 (CH2Cl2-n-hexane, 1:1). 1H NMR (DMSO-d
6
): δ = 9.26 (s, 1 H), 9.18 (s, 1 H), 7.95 (d, J = 1.5 Hz, 1 H), 7.92 (d, J = 1.5 Hz, 1 H), 7.25-7.36 (m, 4 H), 7.13 (dd, J = 8.4, 1.5 Hz, 1 H), 6.99 (m, 2 H), 6.74 (m, 2 H), 3.86 (s, 3 H), 3.84 (s, 3 H), 2.39 (s, 3 H). 13C NMR (CDCl3): δ = 168.7, 168.5, 150.8, 148.5, 135.3, 134.9, 134.1, 134.0, 133.9, 131.7, 131.5, 131.4, 125.1, 124.3, 117.2, 116.8, 114.6, 114.2, 112.7, 112.1, 51.7, 51.6, 21.1. DCI-MS: m/z (%) = 391 (100) [M+], 392 (26), 393 (4).
18 In the ortho series, reaction with POCl3 leads to intractable mixture. Nevertheless, dichloroquinacridines are preferred over quinacridones since they are more soluble and less hygroscopic.
19 Cosimbescu L, and Shi J. inventors; US Pat. Appl. US 2004002605.
; Chem. Abstr. 2004, 140, 77134
20a
Heravi MM.
Behbahani FK.
Oskooie HA.
Shoar RH.
Tetrahedron Lett.
2005,
46:
2775
20b
CAUTION: metallic perchlorate salts were reported to be explosive.
21 In our hands, a 29:71 molar ratio of quinacridine 2b (R2 = CH3, R1 = R3 = H) and dihydroquinacridine(9b) mixture was brought up only to 73:27 (2b:9b). Increasing the catalytic load to 7% and the reaction time from 45 min to 16 h led to a similar result.
22a
Bonthrone W.
J. Chem. Soc.
1959,
2773
22b
Bonthrone W.
J. Chem. Ind.
1960,
1192
22c In all cases, quantitative aromatization was observed on the crude mixture NMR analysis.
23
General Procedure.
The amount of hydrogenated quinacridines in the mixture was estimated my NMR, based on the relative peak inten-sities. Characteristic peaks of hydrogenated quinacridines were located at δ = 4.5 ppm (methylene group), whereas those of quinacridine are the more downfield-shifted at δ = 9.4 ppm (para) or δ = 8.6 ppm (ortho). Lateral methyl groups are also of relevant importance and are situated in the 2.3-3.1 ppm zone, those borne by hydrogenated products being shifted more upfield. Such a mixture (300 µmol in hydro-genated compounds) was dissolved in AcOH (10 mL), TrBF4 (330 µmol) was added and the mixture was heated to reflux. Crude mixture was poured in cold H2O ca. 10 min later. The pH value was adjusted to neutrality and the brown suspension was filtered and dried. The mixture was purified by column chromatography using a gradient of MeOH in CH2Cl2 (1-3% v/v).
24
Cai X.-H.
Yang H.-J.
Zhang G.-L.
Can. J. Chem.
2005,
83:
273
25 After 80 min and at r.t., a 90% conversion is observed after 30 min as judged by NMR. Due to formation of red colloidal selenium, use of TrBF4 seems to be of greater synthetic use for conversion of dihydrogenated quinacridines into quinacridines.
26 Adding SeO2 twice in the same flask seems to be preferable than an unique initial load. Selenium dioxide was firstly reacted in a flask containing both substrate 9d and AcOH. Then, 80 min later, AcOH was evaporated, naphthalene added, SeO2 newly added and mixture heated to 230 °C. When both loads of SeO2 were initially mixed with substrate and acid, a 72:28 ratio was obtained.
27
Cellier PP.
Spindler J.-F.
Taillefer M.
Cristau H.-J.
Tetrahedron Lett.
2003,
44:
7191
28
El-Massry A.-M.
Amer A.
Pittman CU.
Synth. Commun.
1990,
20:
1091
29
Boukherroub R.
Chatgilialoglu C.
Manuel G.
Organometallics
1996,
15:
1508
30 Compound 11: white solid; mp 236-238 °C; R
f
= 0.37 (CH2Cl2-MeOH, 9:1). 1H NMR (CDCl3): δ = 8.18 (s, 2 H), 8.02 (d, 2 H, J = 8.4 Hz), 7.67 (dd, 2 H, J = 8.7. 1.8 Hz), 3.32 (m, 4 H), 2.66 (s, 6 H). 13C NMR (CDCl3): δ = 160.6, 145.9, 141.1, 137.3, 133.0, 128.6, 126.1, 124.2, 124.0, 34.1, 21.9. DCI-MS: m/z (%) = 379 (100) [M+], 380 (26), 381 (67), 382 (16), 383 (12).
31a X-ray structure of intermediate 7c (R = CH3) showed that the molecule exhibits a dihedral angle of 35.9° (Cesario, M.; Baudoin, O.; Teulade-Fichou, M.-P. unpublished results).
31b
Baudoin O.
PhD Thesis
Université Pierre and Marie Curie;
Paris:
1998.
32
Inanaga J.
Ishikawa M.
Yamaguchi M.
Chem. Lett.
1987,
1485
33
Shabangi M.
Sealy JM.
Fuchs JR.
Flowers RA.
Tetrahedron Lett.
1998,
39:
4429
34
Dahlen A.
Himersson G.
Knettle BW.
Flowers RA.
J. Org. Chem.
2003,
68:
4870
35
Kamochi Y.
Kudo T.
Heterocycles
1993,
36:
2383
36 Compound 7c was reacted with 5 equiv of SmI2 for 1 h at r.t. in a THF/HMPA mixture. Increasing the reaction time to 2 h or 24 h, as well as using 6 equiv of SmI2, did not modify the reaction course.
37
Lee H.
Harvey RG.
J. Org. Chem.
1988,
53:
4587
38a
Firouzabadi H.
Salehi P.
Sardarian AR.
Seddighi M.
Synth. Commun.
1991,
21:
1121
38b
Firouzabadi H.
Salehi P.
Mohammadpour-Baltokr I.
Bull. Chem. Soc. Jpn.
1992,
65:
2878
39
Nicolaou KC.
Baran PS.
Zhong Y.-L.
J. Am. Chem. Soc.
2001,
123:
3183