References and Notes
1a
Evans DA.
Andrews GC.
Acc. Chem. Res.
1974,
7:
147
1b
Werstiuk NH.
Tetrahedron
1983,
39:
205
1c
Block E.
Reactions of Organosulfur Compounds
Academic Press;
New York:
1978.
For reviews, see:
2a
Markó IE. In Comprehensive Organic Synthesis
Vol 3:
Trost BM.
Fleming I.
Pattenden G.
Pergamon;
New York:
1991.
Chap. 3.10.
2b
Vedejs E.
Acc. Chem. Res.
1984,
17:
358
2c
Li AH.
Dai LX.
Aggarwal VK.
Chem. Rev.
1997,
97:
2341
Examples for [2,3]-sigmatropic rearrangements of allyl sulfides, see:
3a
Ma M.
Peng L.
Li C.
Zhang X.
Wang J.
J. Am. Chem. Soc.
2005,
127:
15016
3b
McMillen DW.
Varga N.
Reed BA.
King C.
J. Org. Chem.
2000,
65:
2532
3c
Zhang XM.
Qu ZH.
Shi WF.
Jin XL.
Wang JB.
J. Org. Chem.
2002,
67:
5621
3d
Gulea M.
Marchand P.
Masson S.
Saquet M.
Collignon N.
Synthesis
1998,
1635
3e
Bell PT.
Cagle PC.
Vichard D.
Gladysz JA.
Organometallics
1996,
15:
4695
3f
Cagle PC.
Meyer O.
Weickhardt K.
Arif AM.
Gladysz JA.
J. Am. Chem. Soc.
1995,
117:
11730
3g
Carter DS.
van Vranken DL.
Tetrahedron Lett.
1999,
40:
1617
4
Castro AMM.
Chem. Rev.
2004,
104:
2939
5a
Streiff S.
Ribeiro N.
Désaubry L.
J. Org. Chem.
2004,
69:
7592
5b
Perales JB.
Makino NF.
van Vranken DL.
J. Org. Chem.
2002,
67:
6711
5c
Cheng D.
Zhu SR.
Yu ZF.
Cohe T.
J. Am. Chem. Soc.
2001,
123:
30
5d
Conrad JC.
Parnas HH.
Snelgrove JL.
Fogg DE.
J. Am. Chem. Soc.
2005,
127:
11882
5e
Malmström J.
Gupta V.
Engman L.
J. Org. Chem.
1998,
63:
3318
5f
Albéniz AC.
Espinet P.
Lin YS.
Organometallics
1996,
15:
5010
6a
Arora A.
Tripathi C.
Shukla Y.
Curr. Cancer Ther. Rev.
2005,
1:
199
6b
Arora A.
Seth K.
Shukla Y.
Carcinogenesis
2004,
25:
941
6c
Thomas RD.
Green M.
Wilson C.
Sadrud-Din S.
Carcinogenesis
2004,
25:
787
6d
Green M.
Wilson C.
Newell O.
Sadrud-Din S.
Thomas R.
Food Chem. Toxicol.
2005,
43:
1323
7
Sato T.
Hiramura Y.
Otera J.
Nozaki H.
Tetrahedron Lett.
1989,
30:
2821
8
Shinada T.
Yoshida Y.
Ohfune Y.
Tetrahedron Lett.
1998,
39:
6027
9a
Zhan ZP.
Lang K.
Chem. Lett.
2004,
33:
1370
9b
Zhan ZP.
Zhang YM.
J. Chem. Res., Synop.
1999,
280
9c
Zhan ZP.
Zhang YM.
J. Chem. Res., Synop.
1998,
148
9d
Zhan ZP.
Zhang YM.
Synth. Commun.
1998,
28:
493
For reviews, see:
10a
Ciganek E.
Org. React.
1997,
51:
201
10b
Basavaiah D.
Rao PD.
Hyma RS.
Tetrahedron
1996,
52:
8001
10c
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem. Rev.
2003,
103:
811
For recent examples, see:
11a
Das B.
Majhi A.
Banerjee J.
Chowdhury N.
Venkateswarlu K.
Tetrahedron Lett.
2005,
46:
7913
11b
Das B.
Mahender G.
Chowdhury N.
Banerjee J.
Synlett
2005,
1000
11c
Kim JN.
Lee HJ.
Lee KY.
Gong JH.
Synlett
2002,
173
11d
Kabalka GW.
Venkataiah B.
Dong G.
Org. Lett.
2003,
5:
3803
11e
Kabalka GW.
Venkataiah B.
Dong G.
Tetrahedron Lett.
2003,
44:
4673
11f
Chung YM.
G ong JH.
Kim TH.
Kim JN.
Tetrahedron Lett.
2001,
42:
9023
11g
Shi M.
Jiang JK.
Feng YS.
Org. Lett.
2000,
2:
2397
12a
Li J.
Qian WX.
Zhang YM.
Tetrahedron
2004,
60:
5793
12b
Li J.
Xu H.
Zhang YM.
Tetrahedron Lett.
2005,
46:
1931
12c
Li J.
Wang XX.
Zhang YM.
Synlett
2005,
1039
12d
Li J.
Wang XX.
Zhang YM.
Tetrahedron Lett.
2005,
46:
5233
13
Liu YK.
Li J.
Zheng H.
Xu DQ.
Xu ZY.
Synlett
2005,
2999
Some allyl sulfide analogues prepared from Baylis-Hillman alcohols or Baylis-Hillman bromides by other approaches have been previously reported in literature, see:
14a
Calò V.
Lopez L.
Pesce G.
J. Organomet. Chem.
1988,
353:
405
14b
Auvray P.
Knochel P.
Normant JF.
Tetrahedron
1988,
44:
6095
14c
Deane PO.
Guthrie-Strachan JJ.
Kaye PT.
Whittaker RE.
Synth. Commun.
1988,
28:
2601
All Baylis-Hillman acetates were prepared according to literature:
15a
Hoffman HMR.
Rabe J.
Angew. Chem., Int. Ed. Engl.
1983,
22:
795
15b
David HO.
Kenneth MN.
J. Org. Chem.
2003,
68:
6427
16
General Procedure for the Preparation of Sodium (
Z
)-Allyl Thiosulfates.
In a 25-mL flask were added Na2SSO3·5H2O (0.25 g, 1 mmol), Baylis-Hillman acetate 1 (1 mmol), and anhyd MeOH (15 mL). The mixture was stirred at r.t. for 4-8 h. Then, to the resultant mixture was added silica gel powder (2.0 g). After evaporation of the solvent, the silica gel-absorbed crude product was loaded to chromatography column for further purification using MeOH-EtOAc (1:1) as eluent.
According to the literature, in the 1H NMR spectrum of a trisubstituted alkene the β-vinylic proton, cis and trans to the ester group are known to resonate at δ = 7.5 ppm and δ = 6.5 ppm, respectively, when alkene is substituted by an aryl group; while the same proton cis and trans to an ester group appears at δ = 6.8 ppm and δ = 5.7 ppm, respectively, when substituted by an alkyl one. See:
17a
Larson GL.
de Kaifer CF.
Seda R.
Torres LE.
Ramirez JR.
J. Org. Chem.
1984,
49:
3385
17b
Basavaiah D.
Sarma PKS.
Bhavani AKD.
J. Chem. Soc., Chem. Commun.
1994,
1091
17c
Baraldi PG.
Guarneri M.
Pollini GP.
Simoni D.
Barco A.
Benetti S.
J. Chem. Soc., Perkin Trans. 1
1984,
2501
17d
Tanaka K.
Yamagishi N.
Tanikaga R.
Kaji A.
Bull. Chem. Soc. Jpn.
1983,
56:
528
18 Selected spectroscopic data for compound 2:
Compound 2a: 1H NMR (400 MHz, DMSO-d
6): δ = 3.71 (s, 3 H, OCH
3), 4.05 (s, 2 H, methylene-H), 7.38-7.46 (m, 3 H, ArH), 7.63 (s, 1 H, ArCH=), 7.67-7.72 (m, 2 H, ArH). 13C NMR (100 MHz, DMSO-d
6): δ = 31.49, 52.35, 127.33, 128.86, 129.56, 130.42, 134.24, 140.77, 167.28. IR (KBr): ν = 3082, 3026, 1714, 1625 cm-1. MS (70 eV): m/z (%) = 207 [M+ - SO3Na]. Anal. Calcd for C11H11NaO5S2: C, 42.57; H, 3.57. Found: C, 42.89; H, 3.65.
19
Li CJ.
Chem. Rev.
2005,
105:
3095
20
General Procedure for the One-Pot Synthesis of Unsymmetrical Diallylsulfides.
After the sodium (Z)-allyl thiosulfate was readily prepared under an inert atmosphere according to the procedure given in ref. 15, allyl bromide (3 mmol) and In (1.5 mmol) were added to the sodium (Z)-allyl thiosulfate solution, the resulting mixture was stirred at r.t. for 30 min. Then the mixture was stirred at 55 °C for 8-12 h. Upon completion, the reaction mixture was cooled down to r.t. and extracted with Et2O (2 × 30 mL), washed with brine (15 mL), and dried over MgSO4. After evaporation of solvent, the residue was purified by chromatography using cyclohexane-EtOAc (6:1) as eluent.
21 Selected spectroscopic data for compounds 3:
Compound 3a: oil. 1H NMR (400 MHz, CDCl3): δ = 3.16 (d, 2 H, J = 6.8 Hz), 3.59 (s, 2 H), 3.86 (s, 3 H), 4.84-5.04 (m, 2 H), 5.77 (ddt, 1 H, J
1 = 17.2 Hz, J
2 = 10.0 Hz, J
3 = 6.8 Hz), 7.26-7.50 (m, 5 H, ArH), 7.76 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 28.11, 36.14, 52.44, 117.33, 125.72, 127.88, 128.82, 129.11, 129.84, 134.34, 140.81, 168.24. IR (film): ν = 3081, 3060, 3026, 1716, 1633, 1597 cm-1.
MS (70 eV): m/z (%) = 248 [M+]. Anal. Calcd for C14H16O2S: C, 67.71; H, 6.49. Found: C, 67.50; H, 6.62.
Compound 3c: oil. 1H NMR (400 MHz, CDCl3): δ = 3.19 (d, 2 H, J = 6.8 Hz), 3.55 (s, 2 H), 3.86 (s, 3 H), 4.96-5.06 (m, 2 H), 5.80 (ddt, 1 H, J
1 = 17.2 Hz, J
2 = 10.0 Hz, J
3 = 6.8 Hz), 7.39 (d, 2 H, J = 8.0 Hz, ArH), 7.46 (d, 2 H, J = 8.0 Hz, ArH), 7.69 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 27.82, 36.06, 52.35, 117.33, 125.51, 128.86, 129.70, 130.94, 133.29, 133.93, 139.39, 167.66. IR (film): ν = 3076, 3054, 3023, 1718, 1632, 1593 cm-1. MS (70 eV): m/z (%) = 282 [M+], 284 [M+ + 2]. Anal. Calcd for C14H15ClO2S: C, 59.46; H, 5.35. Found: C, 59.21; H, 5.43.
Compound 3e: oil. 1H NMR (400 MHz, CDCl3): δ = 3.21 (d, 2 H, J = 6.8 Hz), 3.62 (s, 2 H), 3.84 (s, 3 H), 3.85 (s, 3 H), 4.99-5.07 (m, 2 H), 5.84 (ddt, 1 H, J
1 = 16.8 Hz, J
2 = 10.0 Hz, J
3 = 6.8 Hz), 6.94 (d, 2 H, J = 9.2 Hz, ArH), 7.50 (d, 2 H, J = 9.2 Hz, ArH), 7.71 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 28.17, 35.22, 52.16, 55.31, 113.70, 114.07, 117.15, 127.41, 128.80, 131.63, 134.12, 140.71, 160.26, 168.17. IR (film): ν = 3075, 3058, 3023, 1714, 1632, 1605 cm-1. MS (70 eV): m/z (%) = 278 [M+]. Anal. Calcd for C15H18O3S: C, 64.72; H, 6.52. Found: C, 64.96; H, 6.62.