Subscribe to RSS
DOI: 10.1055/s-2006-939075
Two Protocols for the Conversion of Biphenol to Binaphthol: Synthesis of Diospyrol
Publication History
Publication Date:
24 April 2006 (online)
Abstract
The application of directed orthometallation (DoM), Fries rearrangement and transmetallation followed by allylation and cyclization is reported for the conversion of biphenol to binaphthol as a means for the synthesis of diospyrol. Furthermore, the same transformation can be accomplished by the reaction of the dienolate anion of an α,β-unsaturated amide with an aryne intermediate.
Key words
arynes - biaryls - ring closure - directed orthometallation - Fries rearrangement
-
1a
Snieckus V. Chem. Rev. 1990, 90: 879 -
1b
Green L.Chauder B.Snieckus V. J. Heterocycl. Chem. 1999, 36: 1453 -
1c
Chauder B.Green L.Snieckus V. Pure Appl. Chem. 1999, 71: 1521 -
1d
Whisler MC.MacNeil S.Snieckus V.Beak P. Angew. Chem. Int. Ed. 2004, 43: 2006 - 2
Clayden J. Organolithiums: Selectivity for Synthesis Vol. 23:Baldwin JE.Williams RM. Tetrahedron Organic Chemistry Series, Pergamon Press; Oxford: 2002. - 3
Gilman H.Bebb RL. J. Am. Chem. Soc. 1939, 61: 109 - 4
Wittig G.Fuhrmann G. Chem. Ber. 1940, 73: 1197 -
5a
Loder JW.Mongkolsuk S.Robertson A.Whalley WB. J. Chem. Soc. 1957, 2233 -
5b
Mongkolsuk S.Sdarwonvivat C. J. Chem. Soc. 1965, 1533 -
5c
Yoshihira K.Natori S.Kanchanapee P. Tetrahedron Lett. 1967, 4857 -
5d
Yoshihira K.Tezuka M.Kanchanapee P.Natori S. Chem. Pharm. Bull. 1971, 19: 2271 -
5e
Borsub L.Thebtaranonth Y.Ruchirawat S.Sadavongvivad C. Tetrahedron Lett. 1976, 105 -
6a
Daengsvang S.Mangalasmaya M. Ann. Trop. Med. Parasitol. 1941, 35: 43 -
6b
Sadun EH.Vajrasthira S. J. Parasitol. 1954, 40: 49 -
7a
Manfredi KP.Blunt JW.Cardellina JH.McMahon JB.Pannell LL.Cragg GM.Boyd MR. J. Med. Chem. 1991, 34: 3402 -
7b
Hallock YF.Manfredi KP.Dai J.-R.Cardellina JH.Gulakowski RJ.McMahon JB.Schäffer M.Stahl M.Gulden K.-P.Bringmann G.François G.Boyd MR. J. Nat. Prod. 1997, 60: 677 - 8
Boyd MR.Hallock YF.Cardellina JH.Manfredi KP.Blunt JW.McMahon JB.Buckheit RW.Bringmann G.Schäffer M.Cragg GM.Thomas DW.Jato JG. J. Med. Chem. 1994, 37: 1740 -
9a
Sahakitpichan P.Thasana N.Ruchirawat S. Synthesis 2005, 2934 -
9b
Govindachari TR.Viswanathan N.Ravindranath KR.Anjaneyulu B. Indian J. Chem. 1973, 11: 1081 -
9c
Mahidol C.Tarnchompoo B.Thebtaranonth C.Thebtaranonth Y. Tetrahedron Lett. 1989, 30: 3861 - For the synthesis of naphthol derivatives via regiospecific aryne annulation, see:
-
10a
Hoye TR.Chen M.Mi L.Priest OP. Tetrahedron Lett. 1994, 35: 8747 -
10b
Hoye TR.Mi L. Tetrahedron Lett. 1996, 37: 3097 -
10c
Hoye TR.Mi L. J. Org. Chem. 1997, 62: 8586 -
10d
Hoye TR.Chen M.Hoang B.Mi L.Priest OP. J. Org. Chem. 1999, 64: 7184 -
11a
Beak P.Brown RA. J. Org. Chem. 1977, 42: 1823 -
11b
de Silva SO.Reed JN.Snieckus V. Tetrahedron Lett. 1978, 5099 -
11c
Beak P.Brown RA. J. Org. Chem. 1979, 44: 4463 -
11d
Meyers AI.Lutomski K. J. Org. Chem. 1979, 44: 4464 -
11e
Sibi MP.Jalil Miah MA.Snieckus V. J. Org. Chem. 1984, 49: 737 -
12a
Sibi MP.Snieckus V. J. Org. Chem. 1983, 48: 1935 -
12b
Sibi MP.Chattopadhyay S.Dankwardt JW.Snieckus V. J. Am. Chem. Soc. 1985, 107: 6312 -
12c
Parsons AS.Garcia JM.Snieckus V. Tetrahedron Lett. 1994, 35: 7537 -
12d
Blakemore PR.Kilner C.Milicevic SD. J. Org. Chem. 2005, 70: 373 -
13a
Casas R.Cavé C.d’Angelo J. Tetrahedron Lett. 1995, 36: 1039 -
13b
Superchi S.Minutolo F.Pini D.Salvadori P. J. Org. Chem. 1996, 61: 3183 -
13c
Fürstner A.Seidel G.Kindler N. Tetrahedron 1999, 55: 8215 - For intramolecular cyclization of allylbenzamide derivatives, see:
-
16a
Yu S.Rabalakos C.Mitchell WD.Wulff WD. Org. Lett. 2005, 7: 367 -
16b
de Koning CB.Michael JP.Rousseau AL. J. Chem. Soc., Perkin Trans. 1 2000, 787 -
16c
de Koning CB.Michael JP.Rousseau AL. Tetrahedron Lett. 1997, 38: 893 -
16d
Sibi MP.Dankwardt JW.Snieckus V. J. Org. Chem. 1986, 51: 271 -
16e
Hattori T.Takeda A.Suzuki K.Koike N.Koshiishi E.Miyano S. J. Chem. Soc., Perkin Trans. 1 1998, 3661 -
16f
Namsaaid A.Ruchirawat S. Org. Lett. 2002, 4: 2633 -
18a
Charette AB.Chua P. Synlett 1998, 163 -
18b
Charette AB.Grenon M. Tetrahedron Lett. 2000, 41: 1677 - 20
Adimurthy S.Ramachandraiah G. Tetrahedron Lett. 2004, 45: 5251 - 21
Bringmann G.Ortmann T.Feineis D.Peters E.-M.Peters K. Synthesis 2000, 383
References and Notes
Directed Orthometallation (DoM) and Fries Rearrangement.
To a solution t-BuLi (1.7 M, 30 mL, 50 mmol) and TMEDA (7.5 mL, 50 mmol) in dry THF (100 mL) was slowly added a solution of 2,2′-N,N-diethylcarbamoyl-1,1′-biphenyl (10, 7.68 g, 20 mmol) in THF (50 mL) at -78 °C under N2 atmosphere. The stirred reaction mixture was allowed to attain r.t. overnight and treated with a sat. NH4Cl solution. The organic solvent was removed in vacuo and the remaining solution was extracted with CH2Cl2. The combined organic layer was washed with H2O, brine, dried (anhyd Na2SO4), and evaporated to give a viscous oil. After purification by flash column chromatography using EtOAc-hexane as eluent, 2,2′-dihydroxybiphenyl-3,3′-dicarboxylic acid bisdiethyl amide(4) was obtained (6.14 g, 80%) as a white solid; mp 140-141 °C (EtOAc-hexane). IR (KBr): 3428, 2981, 1600, 1572, 1488, 1450, 1408, 1353, 1311, 1259, 1141 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.27 (t, J = 7.0 Hz, 12 H), 3.53 (q, J = 7.0 Hz, 8 H), 6.99 (t, J = 7.2, 7.8 Hz, 2 H), 7.31 (dd, J = 1.8, 7.8 Hz, 2 H), 7.38 (dd, J = 2.0, 7.7 Hz, 2 H). 13C NMR (50 MHz, CDCl3): δ = 13.4, 41.2, 119.3, 120.8, 127.1, 127.2, 133.7, 149.0, 171.0. MS (EI): m/z (%) = 385 (20) [M+ + 1], 384 (72) [M+], 383 (51), 313 (78), 312 (46), 311 (82), 310 (45), 295 (21), 285 (72), 283 (38), 240 (27), 239 (100). HRMS (FAB): m/z calcd for C22H28N2O4 [M + H+]: 385.2127; found: 385.2128.
Yield of 3b was improved to 53% using CuBr·SMe2.
17
Representative Procedure for the Double Ring Closure.
To a stirred THF (5 mL) solution of 2,2′-dimethoxy-4,4′-bis(2-methylallyl)biphenyl-3,3′-dicarboxylic acid bisdiethyl amide (3a, 0.1316 g, 0.25 mmol) at -78 °C under Ar was added a solution of MeLi (1.4 M, 1.1 mL, 1.5 mmol) in Et2O. The solution turned deep violet and was allowed to warm to r.t. and stirred at this temperature overnight. The reaction was quenched by the addition of 20 mL of sat. NH4Cl and extracted with CH2Cl2. The organic layer was combined, washed with H2O, brine and dried (anhyd Na2SO4). The crude product obtained after evaporation of CH2Cl2 was purified by PLC using CH2Cl2-hexane (2:1) as eluent to give white solid as 1,1′-dimethoxy-6,6′-dimethyl-2,2′-binaph-thalenyl-8,8-diol (1a, 0.0699 g, 75%); mp 234-236 °C (EtOAc-hexane). IR (KBr): 3321, 2926, 1637, 1573, 1460, 1378, 1354, 1058 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.47 (s, 6 H), 3.58 (s, 6 H), 6.82 (d, J = 1.4 Hz, 2 H), 7.17 (br s, 2 H), 7.50 (d, J = 8.5 Hz, 2 H), 7.58 (d, J = 8.5 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 21.7, 61.8, 112.9, 115.5, 118.4, 123.7, 124.3, 129.1, 136.5, 138.7, 153.4, 154.1. MS (EI): m/z (%) = 374 (61) [M+], 356 (15), 343 (23), 342 (81), 329 (36), 328 (100). HRMS (micro-TOF, ESI): m/z calcd for C24H22O4 [M + H+]: 375.1591; found: 375.1584.
Representative Procedure for the Aryne Annulation.
A solution of lithium 2,2,6,6-tetramethylpiperidine (LTMP, 6.4 mmol) was prepared at 0 °C from 2,2,6,6-tetramethyl-piperidine (1.1 mL) and n-BuLi (4.95 mL) in dry THF (20 mL). After 30 min, the solution was cooled to -78 °C and a solution of N,N-diethyl seneciomide (7a, 0.66 g, 4.3 mmol) in dry THF (5 mL) was added and stirred at this temperature for 1 h. A solution of tetrabromo-2,2′-dimethoxybiphenyl (6, 0.57 g, 1.1 mmol) in dry THF (15 mL) was added drop-wise, the reaction turned to dark red. After the addition was complete, the reaction was slowly warmed to r.t. and stirred overnight. Then, sat. NH4Cl was added and the mixture was extracted with CH2Cl2. The combined organic layer was washed with H2O, brine and dried (Na2SO4) and evaporated to dryness. Further purification was carried out by PLC (SiO2, 4% EtOAc-hexane) to obtain binaphthol 12 (0.117 g, 20%).
Compound 12: mp 249-250 °C (EtOAc-hexane). IR (CHCl3): 3344 (OH), 3010, 1636, 1369, 803 cm-1. 1H NMR (200 MHz, CDCl3): δ = 2.55 (s, 6 H), 3.61 (s, 6 H), 6.91 (d, J = 1.3 Hz, 2 H), 7.56 (d, J = 0.9 Hz, 2 H), 7.84 (s, 2 H), 9.76 (s, 2 H). 13C NMR (50 MHz, CDCl3): δ = 22.0, 62.3, 114.3, 116.3, 118.2, 118.3, 123.1, 132.1, 134.4, 140.4, 153.4, 154.4. MS (EI): m/z (%) = 534 (50) [M+ + 2], 532 (100) [M+], 530 (48), 488 (41), 486 (84), 484 (42). Anal. Calcd for C24H20Br2O4: C, 54.16; H, 3.79. Found: C, 54.27; H, 3.76.