Subscribe to RSS
DOI: 10.1055/s-2006-939685
Grubbs’ Metathesis Catalyst - A Versatile Catalysts for Non-Metathetic Reactions
Publication History
Publication Date:
24 April 2006 (online)
Biographical Sketches
Introduction
Grubbs’ ruthenium-based catalysts (1 and 2) have demonstrated remarkable efficiency in olefin metathesis over the past ten years. [1] However, non-metathetic applications appeared very recently that deserve special attention and broaden the synthetic utility of Grubbs’ catalysts. [2] The complexes were shown to catalyze the Kharasch addition, the removal of allyl groups from amines, the atom-transfer radical polymerization, [3] the hydrogenation of olefins, the transfer hydrogenation of ketones, [4] the dehydrogenative oxidation of alcohols, the dehydrogenative condensation of alcohols, isomerization, hydrosilylation of alkynes, cycloaddition and the hydro-silylation of carbonyls. [5] The aim of this article is to give some examples of these advances, with special focus on practical concerns.
Catalyst 1 is prepared by treatment of phenyl diazomethane with RuCl2(PPh3)3 complex, followed by replacement of PPh3 with PCy3. [6] The replacement of one PCy3 ligand by an imidazol-based N-heterocyclic carbene (NHC) from complex 1 affords catalyst 2 in quantitative yield. [7] Both catalysts are very stable to air and moisture.
Abstracts
(A) Complex 1 promotes the atom-transfer radical addition. Radical cyclization occurs with high diastereoselectivity. [8] | |
(B) Grubbs-type carbene 1 (ca. 1:1000) catalyzes the isomerization of allyl alcohol and affords propionaldehyde in a very high yield. The methyl derivative, 3-buten-2-ol, leads to the corresponding 2-butanone. [9] | |
(C) Isomerization of unsaturated oxygen and nitrogen-containing compounds takes place in presence of Grubbs’ carbenes at ambient temperature in moderate yield. [10] | |
(D) Grubbs’ carbene efficiently catalyzes the deprotection of tertiary allylic amines. In addition to the novelty of the method, it is general, selective, and synthetically simple. Significantly, the catalytic system directs the reaction toward the selective deprotection of allylamines in the presence of allylic ethers. [11] | |
(E) Alk-1-en-3-ols under exposure to complex 1 afford an allylic alcohol to methyl ketone transformation even at room temperature. [12] | |
(F) The catalytic activity of Grubbs’ first-generation catalyst towards dimerization, vinylation or nucleophilic attack of carboxylic acids on terminal alkynes was observed very recently. The preference for dimerization or vinylation is strongly dependent on the nature of the terminal alkyne. [13] | |
(G) Complexes are shown to be effective catalysts for the inter- and intramolecular hydrosilylation of alkynes. [14] | |
(H) Very recently, it was observed that Grubbs’ carbene complexes can catalyze [3C+2C] cycloaddition processes. [15] |
-
1a
Trnka TM.Grubbs RH. Acc. Chem. Res. 2001, 34: 18 -
1b
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012 -
1c
Schuster M.Blechert S. Angew. Chem. Int. Ed. 1997, 36: 2036 -
1d
Pariya C.Jayaprakash KN.Sarkar A. Coord. Chem. Rev. 1998, 168: 1 -
1e
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 -
1f
Maishal TK.Sinha-Mahapatra DK.Paranjape K.Sarkar A. Tetrahedron Lett. 2002, 43: 2263 -
1g
Maishal TK.Sarkar A. Synlett 2002, 1925 -
1h
Maishal TK.Mondal B.Puranik VG.Wadgaonkar PP.Lahiri GK.Sarkar A. J. Organomet. Chem. 2005, 690: 1018 -
2a
Alcaide B.Almendros P. Chem. Eur. J. 2003, 9: 1258 -
2b
Trost BM.Toste D.Pinkerton AB. Chem. Rev. 2001, 101: 2067 -
3a
Bielawski CW.Louie J.Grubbs RH. J. Am. Chem. Soc. 2000, 122: 12872 -
3b
Simal F.Demonceau A.Noels AF. Angew. Chem. Int. Ed. 1999, 38: 538 - 4
Louie J.Bielawski CW.Grubbs RH. J. Am. Chem. Soc. 2001, 123: 11312 - 5
Maifeld SV.Miller RL.Lee D. Tetrahedron Lett. 2002, 43: 6363 - 6
Schwab P.Grubbs RH.Ziller JW. J. Am. Chem. Soc. 1996, 118: 100 - 7
Scholl M.Ding S.Lee WC.Grubbs RH. Org. Lett. 1999, 1: 953 - 8
Schmidt B.Pohler M.Costisella B. J. Org. Chem. 2004, 69: 1421 - 9
Werner H.Grünwald C.Stüer W.Wolf J. Organometallics 2003, 22: 1558 - 10
Cadot C.Dalko PI.Cossy J. Tetrahedron Lett. 2002, 43: 1839 - 11
Alcaide B.Almendros P.Alonso JM.Aly MF. Org. Lett. 2001, 3: 3781 - 12
Hoye TR.Zhao H. Org. Lett. 1999, 1: 169 - 13
Melis K.Opstal T.Verpoort F. Eur. J. Org. Chem. 2002, 3779 - 14
Maifeld SV.Tran MN.Lee M. Tetrahedron Lett. 2005, 46: 105 - 15
López F.Delgado A.Rodríguez JR.Castedo L.Mascareñas JL. J. Am. Chem. Soc. 2004, 126: 10262
References and Notes
-
1a
Trnka TM.Grubbs RH. Acc. Chem. Res. 2001, 34: 18 -
1b
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012 -
1c
Schuster M.Blechert S. Angew. Chem. Int. Ed. 1997, 36: 2036 -
1d
Pariya C.Jayaprakash KN.Sarkar A. Coord. Chem. Rev. 1998, 168: 1 -
1e
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 -
1f
Maishal TK.Sinha-Mahapatra DK.Paranjape K.Sarkar A. Tetrahedron Lett. 2002, 43: 2263 -
1g
Maishal TK.Sarkar A. Synlett 2002, 1925 -
1h
Maishal TK.Mondal B.Puranik VG.Wadgaonkar PP.Lahiri GK.Sarkar A. J. Organomet. Chem. 2005, 690: 1018 -
2a
Alcaide B.Almendros P. Chem. Eur. J. 2003, 9: 1258 -
2b
Trost BM.Toste D.Pinkerton AB. Chem. Rev. 2001, 101: 2067 -
3a
Bielawski CW.Louie J.Grubbs RH. J. Am. Chem. Soc. 2000, 122: 12872 -
3b
Simal F.Demonceau A.Noels AF. Angew. Chem. Int. Ed. 1999, 38: 538 - 4
Louie J.Bielawski CW.Grubbs RH. J. Am. Chem. Soc. 2001, 123: 11312 - 5
Maifeld SV.Miller RL.Lee D. Tetrahedron Lett. 2002, 43: 6363 - 6
Schwab P.Grubbs RH.Ziller JW. J. Am. Chem. Soc. 1996, 118: 100 - 7
Scholl M.Ding S.Lee WC.Grubbs RH. Org. Lett. 1999, 1: 953 - 8
Schmidt B.Pohler M.Costisella B. J. Org. Chem. 2004, 69: 1421 - 9
Werner H.Grünwald C.Stüer W.Wolf J. Organometallics 2003, 22: 1558 - 10
Cadot C.Dalko PI.Cossy J. Tetrahedron Lett. 2002, 43: 1839 - 11
Alcaide B.Almendros P.Alonso JM.Aly MF. Org. Lett. 2001, 3: 3781 - 12
Hoye TR.Zhao H. Org. Lett. 1999, 1: 169 - 13
Melis K.Opstal T.Verpoort F. Eur. J. Org. Chem. 2002, 3779 - 14
Maifeld SV.Tran MN.Lee M. Tetrahedron Lett. 2005, 46: 105 - 15
López F.Delgado A.Rodríguez JR.Castedo L.Mascareñas JL. J. Am. Chem. Soc. 2004, 126: 10262