References and Notes
For two recent reviews on the carbanion chemistry, see:
1a
Yus M.
Chem. Soc. Rev.
1996,
25:
155
1b
Alonso F.
Yus M.
Chem. Soc. Rev.
2004,
33:
284
For reviews involving the generation and application of α-lithioamines, see:
1c
Cohen T.
Bhupathy M.
Acc. Chem. Res.
1989,
22:
152
1d
Gant TG.
Meyers AI.
Tetrahedron
1994,
50:
2297
1e
Beak P.
Basu A.
Gallagher DJ.
Park YS.
Thayumanavan S.
Acc. Chem. Res.
1996,
29:
552
1f
Cohen T.
Pure Appl. Chem.
1996,
68:
913
1g
Gawley RE.
Curr. Org. Chem.
1997,
1:
71
1h
Kessar SV.
Singh P.
Chem. Rev.
1997,
97:
721
1i
Katritzky AR.
Qi M.
Tetrahedron
1998,
54:
2647
1j
Husson HP.
Royer J.
Chem. Soc. Rev.
1999,
28:
383
1k
Rassu G.
Zanardi F.
Battistini L.
Casiraghi G.
Chem. Soc. Rev.
2000,
29:
109
1l
Casiraghi G.
Zanardi F.
Appendino G.
Rassu G.
Chem. Rev.
2000,
100:
1929
2 For a series of papers on functionalized organolithium compounds, see: Tetrahedron Symposia-in-Print, Nájera, C.; Yus, M., Eds.; Tetrahedron
2005,
61:
3125
For a short discussion on challenges associated with the generation and C-C bond formation of chiral non-racemic N-α-carbanion of protected 4-hydroxy-2-pyrrolidinone A, see:
3a
Zheng X.
Feng C.-G.
Ye J.-L.
Huang P.-Q.
Org. Lett.
2005,
7:
553
3b For a synthesis of a specific 2-pirrolidinone derivative of type 9, see: Poisson JF.
Normant JF.
Org. Lett.
2001,
3:
1889
3c For a related work, see: Iula DM.
Gawley RE.
J. Org. Chem.
2000,
65:
6196
For selected reviews, see:
4a
Elbein AD.
Molyneux R. In
Alkaloids: Chemical and Biological Perspectives
Pelletier SW.
Wiley and Sons;
New York:
1987.
Vol. 5:
4b
Takahata H.
Momose T. In
The Alkaloids
Cordell GA.
Academic;
San Diego, CA:
1993.
Vol. 44:
Chap. 3.
4c
Michael JP.
Nat. Prod. Rep.
1997,
14:
619
4d
Michael JP.
Nat. Prod. Rep.
1998,
15:
571
4e
Michael JP.
Nat. Prod. Rep.
1999,
16:
675
4f
Asano N.
Nash RJ.
Molyneux RJ.
Fleet GWJ.
Tetrahedron: Asymmetry
2000,
11:
1645
For comprehensive reviews on azasugars, see:
5a
Elbein AD.
Molyneux RJ. In
Iminosugars as Glycosidase Inhibitors
Stutz AE.
Wiley-VCH;
Weinheim:
1999.
p.216
5b
Sears P.
Wong C.-H.
Angew. Chem. Int. Ed.
1999,
38:
2301
5c
Watson AA.
Fleet GWJ.
Asano N.
Molyneux RJ.
Nash RJ.
Phytochemistry
2001,
56:
265
5d
Afarinkia K.
Bahar A.
Tetrahedron: Asymmetry
2005,
16:
1239
6
El Nemr A.
Tetrahedron
2000,
56:
8579
7 For a recent synthesis of bulgecinine, see: Chavan SP.
Praveen C.
Sharma P.
Kalkote UR.
Tetrahedron Lett.
2005,
46:
439
8
Huang P.-Q.
Zheng X.
Wang S.-L.
Ye J.-L.
Jin L.-R.
Chen Z.
Tetrahedron: Asymmetry
1999,
10:
3309
9a
Huang P.-Q.
Wu T.-J.
Ruan Y.-P.
Org. Lett.
2003,
5:
4341
9b
Huang P.-Q.
Deng J.
Synlett
2004,
247
For an achiral version, see:
10a
Gallagher T.
Giles M.
Subramanian RS.
Hadley MS.
J. Chem. Soc., Chem. Commun.
1992,
166
10b
Thompson SHJ.
Subramanian RS.
Roberts JK.
Hadley MS.
Gallagher T.
J. Chem. Soc., Chem. Commun.
1994,
933
11
Tang T.
Ruan Y.-P.
Ye J.-L.
Huang P.-Q.
Synlett
2005,
231
12a
Huang P.-Q.
Wang S.-L.
Ye J.-L.
Ruan Y.-P.
Huang Y.-Q.
Zheng H.
Gao JX.
Tetrahedron
1998,
54:
12547
12b
He B.-Y.
Wu T.-J.
Yu X.-Y.
Huang P.-Q.
Tetrahedron: Asymmetry
2003,
14:
2101
12c
Liu L.-X.
Ruan Y.-P.
Guo Z.-Q.
Huang P.-Q.
J. Org. Chem.
2004,
69:
6001
13a
Ha DC.
Yun CS.
Yu E.
Tetrahedron Lett.
1996,
37:
2577
13b
Jacobi PA.
Brielmann HL.
Hauck SI.
J. Org. Chem.
1996,
61:
5013
13c
Farcas S.
Namy JL.
Tetrahedron Lett.
2001,
42:
879
13d
Kim S.-H.
Park Y.
Choo H.
Cha JK.
Tetrahedron Lett.
2002,
43:
6657
13e
Padwa A.
Rashatasakhon P.
Rose M.
J. Org. Chem.
2003,
68:
5139
13f
Mulder JA.
Kurtz KCM.
Hsung RP.
Coverdale H.
Frederick MO.
Shen L.
Zificsak CA.
Org. Lett.
2003,
5:
1547
13g For an approach to exo-glycals, see: Yang WB.
Yang YY.
Gu YF.
Wang SH.
Chang CC.
Lin CH.
J. Org. Chem.
2002,
67:
3773
14a
Koseki Y.
Kusano S.
Ichi D.
Yoshida K.
Nagasaka T.
Tetrahedron
2000,
56:
8855
14b
Xiong H.
Hsung RP.
Shen L.
Hahn JM.
Tetrahedron Lett.
2002,
43:
4449
14c
Koseki Y.
Sato H.
Watanabe Y.
Nagasaka T.
Org. Lett.
2002,
4:
885
14d
Davies SG.
Key MS.
Rodriguez-Solla H.
Sanganee HJ.
Savory ED.
Smith AD.
Synlett
2003,
1659
15 All new compounds (6 and 9) gave satisfactory analytical and spectral data.
General Procedure for the Synthesis of 9.
To a solution of the more polar diastereomer of 5
[12]
(1.0 mmol) in CH2Cl2 (10 mL) was added 0.05 mmol of p-TSA. The mixture was stirred at r.t. for 1 h. Then the reaction was quenched with sat. aq NaHCO3 and extracted with CH2Cl2 (3 × 10 mL). The combined extracts were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel eluting with EtOAc-PE to give 6. To a solution of 6 (1.0 mmol) in a mixture of abs. MeOH (20 mL) and dry CH2Cl2 (10 mL) was added dropwise a solution of MCPBA (3.0 mmol) in CH2Cl2 (10 mL) at -78 °C under nitrogen atmosphere. After the mixture stirred for 1 h, it was allowed to reach r.t. and stirred overnight. Then, the reaction was quenched with a solution of aq Na2S2O3 (10%) and sat. NaHCO3. The mixture was extracted with CH2Cl2 (3 × 40 mL). The combined extracts were washed with brine, dried over anhyd Na2SO4, filtered and concentrated in vacuum. Filtration through a short pad of SiO2 eluting with EtOAc-PE gave 8 as a mixture of diastereomers. The diastereomeric ratios were determined either by flash chromatographic separation or by analysis of 1H NMR spectra of the crude mixture. To a cooled (-78 °C) solution of diastereomeric mixture of 8 (1.0 mmol) in dry CH2Cl2 (10 mL) were added dropwise triethylsilane (10 mmol) and BF3·OEt2 (10.0 mmol) under nitrogen atmosphere. After stirred for 6 h at the same temperature, the reaction was allowed to warm up and stirred at r.t. overnight. The reaction was quenched with sat. aq NaHCO3 and extracted with CH2Cl2 (3 × 20 mL). The combined extracts were washed with brine, dried over anhyd Na2SO4, filtered and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel eluting with EtOAc-PE to give 9.
Selected physical and spectral data for 6d: [α]D
20 +62.0 (c 0.4, CHCl3). IR (film): 3060, 3023, 1719, 1674 cm-1. 1H NMR (500 MHz, CDCl3): δ = 0.80 (t, J = 7.3 Hz, 3 H, CH3), 1.22-1.38 (m, 2 H, MeCH2), 1.94-2.12 (m, 2 H, EtCH2), 2.68 (dd, J = 1.7, 17.8 Hz, 1 H, COCH2), 2.78 (dd, J = 7.0, 17.8 Hz, 1 H, COCH2), 4.42 (d, J = 11.2 Hz, 1 H, PhCH2O), 4.53 (d, J = 11.2 Hz, 1 H, PhCH2O), 4.70 (s, 2 H, PhCH2N), 4.74 (dd, J = 1.7, 7.0 Hz, 1 H, BnOCH), 4.84 (t, J = 7.5 Hz, 1 H, =CH), 7.20-7.40 (m, 10 H, Ar) ppm. 13C NMR (125 MHz, CDCl3): δ = 13.6, 23.3, 28.7, 36.6, 43.4, 69.9, 70.2, 108.0, 127.0, 127.2, 128.0, 128.1, 128.3, 128.4, 128.5, 135.8, 137.3, 138.9, 173.1 ppm. MS (ESI): m/z (%) = 336 (100) [M + H+]. Anal. Calcd for C22H25NO2: C, 78.77; H, 7.51; N, 4.18. Found: C, 78.81; H, 7.47; N, 4.00.
Selected physical and spectral data for 9d: major diastereomer: colorless oil; [α]D
20 +44.2 (c 1.0, CHCl3). IR (film): 3378, 3063, 3031, 1671 cm-1. 1H NMR (500 MHz, CDCl3): δ = 0.84 (t, J = 7.1 Hz, 3 H, CH3), 1.22-1.48 [m, 4 H, Me(CH2)2], 2.50 (dd, J = 1.3, 17.4 Hz, 1 H, COCH2), 2.80 (dd, J = 6.9, 17.4 Hz, 1 H, COCH2), 3.00 (br s, 1 H, OH), 3.40 (d, J = 4.9 Hz, 1 H, BnNCH), 3.78-3.84 (m, 1 H, CHOH), 4.18 (d, J = 15.0 Hz, 1 H, PhCH2N), 4.19 (dd, J = 1.3, 6.9 Hz, 1 H, BnOCH), 4.40 (d, J = 11.7 Hz, 1 H, PhCH2O), 4.48 (d, J = 11.7 Hz, 1 H, PhCH2O), 5.00 (d, J = 15.0 Hz, 1 H, PhCH2N), 7.20-7.40 (m, 10 H, Ar) ppm. 13C NMR (125 MHz, CDCl3): δ = 13.9, 19.3, 34.8, 38.6, 44.2, 68.0, 68.8, 70.4, 71.9, 127.7, 127.8, 128.4, 128.8, 136.2, 137.5, 174.2 ppm. MS (ESI): m/z (%) = 376 (100) [M + Na+]; minor diastereomer: white crystals, mp 77-79 °C; [α]D
20 +13.9 (c 0.4, CHCl3). IR (KBr, pellet): 3394, 3062, 3031, 1669 cm-1. 1H NMR (500 MHz, CDCl3): δ = 0.88 (t, J = 7.3 Hz, 3 H, CH3), 1.10-1.32 [m, 3 H, Me(CH2)2], 1.42-1.52 [m, 1 H, Me(CH2)2], 2.33 (br s, 1 H, OH), 2.51 (d, J = 17.7 Hz, 1 H, COCH2), 2.75 (dd, J = 6.4, 17.7 Hz, 1 H, COCH2), 3.58 (d, J = 4.6 Hz, 1 H, BnNCH), 3.61-3.65 (m, 1 H, CHOH), 4.02 (d, J = 6.4 Hz, 1 H, BnOCH), 4.18 (d, J = 15.2 Hz, 1 H, PhCH2N), 4.42 (s, 2 H, PhCH2O), 5.02 (d, J = 15.2 Hz, 1 H, PhCH2N), 7.20-7.40 (m, 10 H, Ar) ppm. 13C NMR (125 MHz, CDCl3): δ = 13.8, 19.2, 34.8, 38.2, 45.9, 67.8, 70.2, 71.3, 73.8, 127.5, 127.6, 127.7, 127.9, 128.4, 128.6, 136.3, 137.6, 174.3 ppm. MS (ESI): m/z (%) = 354 (67) [M + H+], 376 (100) [M + Na+]. Anal. Calcd for C22H27NO3: C, 74.76; H, 7.70; N, 3.96. Found: C, 74.77; H, 7.94; N, 4.02.
16a
Deslongchamps P.
Stereoelectronic Effects in Organic Chemistry
Pergamon;
New York:
1983.
See also:
16b
Kirby AJ.
The Anomeric Effect and Related Stereoelectronic Effects at Oxygen
Springer;
New York:
1983.
16c
Thatcher GRJ.
The Anomeric Effect and Associated Stereoelectronic Effects
ACS Symposium Series 593, American Chemical Society;
Washington DC:
1993.
16d
Juaristi E.
Cuevas G.
The Anomeric Effect
CRC;
Boca Raton, FL:
1995.
17a For a related stereoelectronic effect observed in another class of N,O-acetals, see: Chen M.-D.
He M.-Z.
Zhou X.
Huang L.-Q.
Ruan Y.-P.
Huang P.-Q.
Tetrahedron
2005,
61:
1335
17b For an example of stereoelectronic control of oxazolidine ring-opening, see: Sélambarom J.
Monge S.
Carré F.
Roque JP.
Pavia AA.
Tetrahedron
2002,
58:
9559
For reviews on the Et3SiH-mediated ionic hydrogenation, see:
18a
Kursanov DN.
Parnes ZN.
Loim NM.
Synthesis
1974,
633
18b
Nagai Y.
Org. Prep. Proced. Int.
1980,
12:
13
For recent reviews on the chemistry of N-acyliminiums, see:
19a
Speckamp WN.
Moolenaar MJ.
Tetrahedron
2000,
56:
3817
19b
Maryanoff BE.
Zhang H.-C.
Cohen JH.
Turchi IJ.
Maryanoff CA.
Chem. Rev.
2004,
104:
1431
19c
Royer J.
Chem. Rev.
2004,
104:
2311
20
Bernardi A.
Micheli F.
Potenza D.
Scolastico C.
Villa R.
Tetrahedron Lett.
1990,
31:
4949