RSS-Feed abonnieren
DOI: 10.1055/s-2006-939853
© Georg Thieme Verlag KG Stuttgart · New York
Pathophysiologie des Renin-Angiotensin-Systems bei Vorhofflimmern
Pathophysiology of the renin-angiotensin-system in atrial fibrillationPublikationsverlauf
eingereicht: 13.2.2006
akzeptiert: 16.3.2006
Publikationsdatum:
11. April 2006 (online)

Zusammenfassung
Kardiovaskuläre Erkrankungen, die mit einer Aktivierung des Renin-Angiotensin-Systems einhergehen - Myokardinfarkt, Herzinsuffizienz, Hypertonie - führen häufig zu Vorhofflimmern. An der Auslösung und Aufrechterhaltung von Vorhofflimmern ist nicht nur die mechanische Vorhofdehnung, sondern auch eine verstärkte Expression einzelner Komponenten des Renin-Angiotensin-Systems in den Vorhöfen beteiligt. Diese induziert über eine inflammatorische Signalkaskade und oxidativen Stress eine Myolyse und verstärkte Fibrose. Letztlich ermöglichen eine lokal verlangsamte Erregungsleitung und eine verkürzte Refraktärzeit kreisende Erregungen, die einen grundlegenden Mechanismus von Vorhofflimmern darstellen. Sowohl ACE-Hemmer als auch AT1-Blocker reduzieren in einer Meta-Analyse das relative Risiko von Vorhofflimmern um ca. 30 %; weitere prospektive, randomisierte, klinische Studien sind notwendig, um diesen Effekt endgültig zu belegen.
Pathophysiology of the renin-angiotensin-system in atrial fibrillation
Cardiovascular diseases which are associated with an activation of the renin-angiotensin-system - myocardial infarction, heart failure, hypertension - often induce atrial fibrillation. The initiation and maintenance of atrial fibrillation is not only initiated by mechanical distension of the atria, but also by increased atrial expression of components of the renin-angiotensin-system, which initiate an inflammatory signal cascade and oxidative stress and in consequence myolysis and interstitial fibrosis. Ultimately, locally decreased conduction velocity and abbreviated refractory period facilitate reentry circuit(s) as an underlying pathomechanism of atrial fibrillation. In a meta-analysis, ACE inhibitors and AT1 blockers, both reduce the relative risk of atrial fibrillation by about 30 %. Further prospective randomized clinical studies are required to establish final evidence.
Schlüsselwörter
Vorhofflimmern - Angiotensin - ACE-Hemmer - AT1-Blocker - Inflammation - Oxidativer Stress
Key words
atrial fibrillation - angiotensin - ACE inhibitor - AT1-Blocker - inflammation - oxidative stress
Literatur
- 1
Allessie M A, Boyden P A, Camm J. et al .
Pathophysiology and prevention of atrial fibrillation.
Circulation.
2001;
103
769-777
MissingFormLabel
- 2
Ausma J, Borgers M.
Dedifferentiation of atrial cardiomyocytes: from in vivo to in vitro.
Cardiovasc Res.
2002;
55
9-12
MissingFormLabel
- 3
Bkaily G, Sculptoreanu A, Wang S. et al .
Angiotensin II-induced increase of T-type Ca2+ current and decrease of L-type Ca2+
current in heart cells.
Peptides.
2005;
26
1410-1417
MissingFormLabel
- 4
Boldt A, Wetzel U, Weigl J. et al .
Expression of angiotensin II receptors in human left and right atrial tissue in atrial
fibrillation with and without underlying mitral valve disease.
J Am Coll Cardiol.
2005;
42
1785-1792
MissingFormLabel
- 5
Boos C J, Anderson R A, Lip G YH.
Is atrial fibrillation an inflammatory disorder?.
Eur Heart J.
2006;
27(2)
136-149
MissingFormLabel
- 6
Bosch R F, Grammer J B, Kühlkamp V, Seipel L.
Elektrisches Remodeling bei Vorhofflimmern. Zelluläre und molekulare Mechanismen.
Z Kardiol.
2000;
89
795-802
MissingFormLabel
- 7
Chen Y J, Chen Y C, Tai C T. et al .
Angiotensin II and angiotensin II receptor blocker modulate the arrhythmogenic activity
of pulmonary veins.
Br J Pharmacol.
2006;
147 (1)
12-22
MissingFormLabel
- 8
Dernellis J, Panaretou M.
Relationship between C-reactive protein concentrations during glucocorticoid therapy
and recurrent atrial fibrillation.
Eur Heart J.
2004;
25
1100-1107
MissingFormLabel
- 9
Dobrev D, Ravens U.
Remodeling of cardiomyocyte ion channels in human atrial fibrillation.
Basic Res Cardiol.
2003;
98
137-148
MissingFormLabel
- 10
Donoghue M, Wakimoto H, Maguire C T. et al .
Heart block, ventricular tachycardia, and sudden death in ACE2 transgenic mice with
downregulated connexins.
J Mol Cell Cardiol.
2003;
35
1043-1053
MissingFormLabel
- 11
Engelhorn T, Goerike S, Doerfler A. et al .
The Angiotensin II type I (AT1)-receptor blocker candesartan increases cerebral blood
flow, reduces infarct size and improves neurilogical outcome following transient cerebral
ischemia in rats.
J Cereb Blood Flow Metab.
2004;
24
467-474
MissingFormLabel
- 12
Goette A, Arndt M, Röcken C. et al .
Regulation of angiotensin II receptor subtypes during atrial fibrillation.
Circulation.
2000;
101
2678-2681
MissingFormLabel
- 13
Goette A, Staack T, Röcken C. et al .
Increased expression of extracellular signal-regulated kinase and angiotensin-converting
enzyme in human atria during atrial fibrillation.
J Am Coll Cardiol.
2000;
35
1669-1677
MissingFormLabel
- 14
Healey J S, Baranchuk A, Crystal E. et al .
Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and
angiotensin receptor blockers.
J Am Coll Cardiol.
2005;
45
1832-1839
MissingFormLabel
- 15
Kim Y M, Guzik T J, Zhang Y H. et al .
A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human
atrial fibrillation.
Circ Res.
2005;
97
629-636
MissingFormLabel
- 16
Korantzopoulos P, Kolettis T M, Kountouris E. et al .
Oral vitamin C administration reduces early recurrence rates after electrical cardioversion
of persistent atrial fibrillation and attenuates associated inflammation.
Int J Cardiol.
2005;
102
321-326
MissingFormLabel
- 17
Kostin S, Klein G, Szalay Z. et al .
Structural correlate of atrial fibrillation in human patients.
Cardiovasc Res.
2002;
54
361-379
MissingFormLabel
- 18
L’Allier P L, Ducharme A, Keller P -F. et al .
Angiotensin-converting enzyme inhibition in hypertensive patients is associated with
a reduction in the occurence of atrial fibrillation.
J Am Coll Cardiol.
2005;
44
159-164
MissingFormLabel
- 19
Li D, Shinagawa K, Pang L. et al .
Effects of angiotensin-converting enzyme inhibition on the development of the atrial
fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart
failure.
Circulation.
2001;
104
2608-2614
MissingFormLabel
- 20
Madrid A H, Bueno M G, Rebollo J MG. et al .
Use of irbesartan to maintain sinus rhythm in patients with long-lasting persistent
atrial fibrillation. A prospective and randomized study.
Circulation.
2002;
106
331-336
MissingFormLabel
- 21
Mathew J P, Fontes M L, Tudor I C. et al .
A multicenter risk index for atrial fibrillation after cardiac surgery.
JAMA.
2004;
291
1720-1729
MissingFormLabel
- 22
Nakashima H, Kumagai K, Urata H. et al .
Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation.
Circulation.
2000;
101
2612-2617
MissingFormLabel
- 23
Nattel S.
New ideas about atrial fibrillation 50 years on.
Nature.
2002;
415
219-226
MissingFormLabel
- 24
Neuberger H -R, Schotten U, Blaauw Y. et al .
Chronic atrial dilation, electrical remodeling, and atrial fibrillation in the goat.
J Am Coll Cardiol.
2006;
47
644-653
MissingFormLabel
- 25
Ogimoto A, Hamada M, Nakura J. et al .
Relation between angiotensin-converting enzyme II genotype and atrial fibrillation
in Japanese patients with hypertrophic cardiomyopathy.
J Hum Genet.
2004;
47
184-189
MissingFormLabel
- 26
Pedersen O D, Bagger H, Kober L, Torp-Pedersen C.
Trandolapril reduces the incidence of atrial fibrillation after acute myocardial
infarction in patients with left ventricular dysfunction.
Circulation.
1999;
100
376-380
MissingFormLabel
- 27
Schulz R, Heusch G.
AT1-receptor blockade in experimental myocardial ischemia/reperfusion.
Clinical Nephrology.
2003;
60
S67-S74
MissingFormLabel
- 28
Sonoyama K, Igawa O, Miake J. et al .
Effects of angiotensin II on the action potential durations of atrial myocytes in
hypertensive rats.
Hypertens Res.
2005;
28
173-179
MissingFormLabel
- 29
Tsai C -T, Lai L -P, Chiang F -T. et al .
Renin-angiotensin system gene polymorphisms and atrial fibrillation.
Circulation.
2004;
109
1640-1646
MissingFormLabel
- 30
Ueng K -C, Tsai T -P, Yu W -C. et al .
Use of enalapril to facilitate sinus rhythm maintenance after external cardioversion
of long-standing persistent atrial fibrilation. Results of a prospective and controlled
study.
Eur Heart J.
2003;
24
2090-2098
MissingFormLabel
- 31
van der Velden H MW, Jongsma H J.
Cardiac gap junctions and connexins: their role in atrial fibrillation and potential
as therapeutics targets.
Cardiovasc Res.
2002;
54
270-279
MissingFormLabel
- 32
Vermes E, Tardif J -C, Bourassa M G. et al .
Enalapril decreases the incidence of atrial fibrillation in patients with left ventricular
dysfunction. Insight from the studies of left ventricular dysfunction (SOLVD) trials.
Circulation.
2003;
107
2926-2931
MissingFormLabel
- 33
Wachtell K, Lehto M, Gerdts E. et al .
Angiotensin II receptor blockade reduces new-onset atrial fibrillation ans subsequent
stroke compared to atenolol. The losartan intervention for end point reduction in
hypertension (LIFE) Study.
J Am Coll Cardiol.
2005;
45
712-719
MissingFormLabel
- 34
Wijffels M CEF, Kirchhof C JHJ, Dorland R, Allessie M A.
Atrial fibrillation begets atrial fibrillation: A study in awake chronically instrumented
goats.
Circulation.
1995;
92
1954-1968
MissingFormLabel
Prof. Dr. med. Dr. h. c. Gerd Heusch
Direktor des Instituts für Pathophysiologie, Zentrum für Innere Medizin, Universitätsklinikum
Essen
Hufelandstraße 55
45122 Essen
Telefon: 0201/7234480
Fax: 0201/7234481
eMail: gerd.heusch@uni-essen.de