References and Notes
<A NAME="RG04606ST-1A">1a</A> Recent Advances in Peptidomimetics; Tetrahedron Symposia-in-Print, No. 83;
Aubé J.
Tetrahedron
2000.
56:
p.50
<A NAME="RG04606ST-1B">1b</A>
Robinson JA.
Synlett
2000,
429
<A NAME="RG04606ST-1C">1c</A>
Smith AB.
Favor DA.
Sprengeler PA.
Guzman MC.
Carrol PJ.
Furst GT.
Hirschmann R.
Bioorg. Med. Chem.
1999,
7:
9
<A NAME="RG04606ST-1D">1d</A>
Hanessian S.
McNaughton-Smith G.
Lombart H.-G.
Lubell WD.
Tetrahedron
1997,
53:
12789
<A NAME="RG04606ST-1E">1e</A>
Giannis A.
Kolter T.
Angew. Chem., Int. Ed. Engl.
1993,
32:
1244
<A NAME="RG04606ST-1F">1f</A>
Kinshenbaum K.
Zuckerman RN.
Dill KA.
Curr. Opin. Struct. Biol.
1999,
9:
530
<A NAME="RG04606ST-1G">1g</A>
Gellman SH.
Acc. Chem. Res.
1998,
31:
173
<A NAME="RG04606ST-2A">2a</A>
Singh RK.
Sinha N.
Jain S.
Salman M.
Nazqui F.
Anand N.
Tetrahedron
2005,
61:
8868
<A NAME="RG04606ST-2B">2b</A>
You S.-L.
Razavi H.
Kelly JW.
Angew. Chem. Int. Ed.
2003,
42:
83
<A NAME="RG04606ST-2C">2c</A>
You S.-L.
Kelly JW.
J. Org. Chem.
2003,
68:
9506
<A NAME="RG04606ST-2D">2d</A>
You S.-L.
Kelly JW.
Chem. Eur. J.
2004,
10:
71
<A NAME="RG04606ST-2E">2e</A>
Davidson BS.
Chem. Rev.
1993,
93:
1771
<A NAME="RG04606ST-2F">2f</A>
Wipf P.
Chem. Rev.
1993,
95:
2115
<A NAME="RG04606ST-2G">2g</A>
Phillips AJ.
Uto Y.
Wipf P.
Reno MJ.
Williams DR.
Org. Lett.
2000,
2:
1165
<A NAME="RG04606ST-3A">3a</A>
Bertran A.
Pattendem G.
Heterocycles
2002,
58:
521
<A NAME="RG04606ST-3B">3b</A>
Wang W.
Nan F.
J. Org. Chem.
2003,
68:
1636
<A NAME="RG04606ST-3C">3c</A>
You S.-Li.
Deechongkit S.
Kelly JW.
Org. Lett.
2004,
6:
2627
<A NAME="RG04606ST-3D">3d</A>
Pattenden G.
Thompson T.
Tetrahedron Lett.
2002,
43:
2459
<A NAME="RG04606ST-3E">3e</A>
Deeley J.
Pattenden G.
Chem. Commun.
2005,
797
<A NAME="RG04606ST-4A">4a</A>
Moreno-Vargas AJ.
Fernández-Bolaños JG.
Fuentes J.
Robina I.
Tetrahedron Lett.
2001,
42:
1283
<A NAME="RG04606ST-4B">4b</A>
Moreno-Vargas AJ.
Jiménez-Barbero J.
Robina I.
J. Org. Chem.
2003,
68:
4138
<A NAME="RG04606ST-5A">5a</A>
Silverman DN.
Lindskog S.
Acc. Chem. Res.
1988,
21:
30
<A NAME="RG04606ST-5B">5b</A>
Greener B.
Rose J.
Chem. Commun.
1999,
2361
<A NAME="RG04606ST-5C">5c</A>
Lehn JM.
Supramolecular Chemistry: Concepts and Perspectives
VCH;
Weinheim:
1995.
<A NAME="RG04606ST-6">6</A>
Cleland WW.
Kreevoy MM.
Science
1994,
264:
1887
<A NAME="RG04606ST-7A">7a</A>
Clerici F.
Gelmi ML.
Gambini A.
J. Org. Chem.
1999,
64:
5764
<A NAME="RG04606ST-7B">7b</A>
Clerici F.
Gelmi ML.
Gambini A.
J. Org. Chem.
2000,
65:
6138
<A NAME="RG04606ST-7C">7c</A>
Clerici F.
Gelmi ML.
Gambini A.
Nava D.
Tetrahedron
2001,
57:
6429
<A NAME="RG04606ST-7D">7d</A>
Avenoza A.
Busto JH.
Canal N.
Peregrina JM.
J. Org. Chem.
2005,
70:
330
<A NAME="RG04606ST-7E">7e</A>
Avenoza A.
Busto JH.
Canal N.
Peregrina JM.
Pérez-Fernández M.
Org. Lett.
2005,
7:
3597
<A NAME="RG04606ST-8A">8a</A>
Sun X.-L.
Kai T.
Takayanagi H.
Furuhata K.
Synlett
1999,
1399
<A NAME="RG04606ST-8B">8b</A>
Bushey ML.
Haukaas MH.
O’Doherty GA.
J. Org. Chem.
1999,
64:
2984
<A NAME="RG04606ST-8C">8c</A>
Saaby S.
Bayón P.
Aburel PS.
Jørgensen KA.
J. Org. Chem.
2002,
67:
4352
<A NAME="RG04606ST-8D">8d</A>
Miyata O.
Iba R.
Hashimoto J.
Naito T.
Org. Biomol. Chem.
2003,
1:
772
<A NAME="RG04606ST-9">9</A> For a review on α-furfuryl amine derivatives, see:
Zhou
W.-S.
Lu Z.-H.
Xu Y.-M.
Liao L.-X.
Wang Z.-M.
Tetrahedron
1999,
55:
11959
<A NAME="RG04606ST-10A">10a</A>
Ciufolini MA.
Wood CW.
Tetrahedron Lett.
1986,
27:
5085
<A NAME="RG04606ST-10B">10b</A>
Ciufolini MA.
Hermann CYW.
Dong Q.
Shimizu T.
Swaminathan S.
Xi N.
Synlett
1998,
105
<A NAME="RG04606ST-11A">11a</A>
McMillan JB.
Molinski TF.
Org. Lett.
2002,
4:
1883
<A NAME="RG04606ST-11B">11b</A>
Willis MC.
Cutting GA.
Piccio VJ.-D.
Durbin MJ.
John MP.
Angew. Chem. Int. Ed.
2005,
44:
1543
<A NAME="RG04606ST-11C">11c</A>
Amino Acids, Peptides and Proteins
Vol.1-28:
Special Periodical Reports, Chemistry Society;
London:
1968-1995.
<A NAME="RG04606ST-12">12</A> For similar condensations between aldohexoses and ketohexoses with β-dicarbonyl
compounds see:
García-González F.
Adv. Carbohydr. Chem.
1956,
11:
97
<A NAME="RG04606ST-13">13</A>
Misra AK.
Agnihotri G.
Carbohydr. Res.
2004,
339:
1381
<A NAME="RG04606ST-14A">14a</A>
Moreno-Vargas AJ.
Robina I.
Demange R.
Vogel P.
Helv. Chim. Acta
2003,
86:
1894
<A NAME="RG04606ST-14B">14b</A>
Robina I.
Moreno-Vargas AJ.
Fernández-Bolaños JG.
Fuentes J.
Demange R.
Vogel P.
Bioorg. Med. Chem. Lett.
2001,
11:
2555
<A NAME="RG04606ST-15A">15a</A>
For the same reaction on a similar but unstable cyclic sulfite giving only one diasteroisomer,
see ref. 8d.
<A NAME="RG04606ST-15B">15b</A>
Seki M.
Mori K.
Eur. J. Org. Chem.
1999,
2965
For reviews on cyclic sulfite reactivity, see:
<A NAME="RG04606ST-16A">16a</A>
Lohray BB.
Synthesis
1992,
1035
<A NAME="RG04606ST-16B">16b</A>
Byun H.-S.
He L.
Bittman R.
Tetrahedron
2000,
56:
7051
<A NAME="RG04606ST-17">17</A>
Selected data for compound 7: [α]D
20 +99 (c 0.98, CH2Cl2). 1H NMR (300 MHz, CDCl3, 298 K): δ = 7.40-7.28 (m, 5 H, H-arom.), 6.75 (s, 1 H, H-4), 5.29 (s, 2 H, CH2Ph), 4.56 (d, 1 H, J
1
′,2
′ = 7.3 Hz, H-1′), 4.02 (m, 1 H, H-2′), 3.76 (dd, 1 H, J
3
′a,3
′b = 11.5 Hz, J
3
′a,2
′= 3.4 Hz, H-3′a), 3.72 (dd, 1 H, J
3
′b,2
′ = 5.2 Hz, H-3′b), 2.60 (s, 3 H, CH3) ppm. 13C NMR (75.4 MHz, CDCl3, 298 K): δ = 163.5 (CO), 160.4, 147.5 (C-2, C-5), 135.9, 128.6, 128.3, 128.2 (6 C-arom.),
114.2 (C-3), 110.9 (C-4), 71.9 (C-2′), 66.2 (CH2Ph), 62.9 (C-3′), 59.9 (C-1′), 14.3 (CH3) ppm. HRMS (CI): m/z calcd for C16H18N3O5 + H+: 332.1246; found: 332.1236.
<A NAME="RG04606ST-18">18</A>
Selected data for compound 9: [α]D
20 +25 (c 2.62, CH2Cl2). 1H NMR (300 MHz, CDCl3, 298 K): δ = 7.42-7.36 (m, 10 H, H-arom.), 6.67 (s, 1 H, H-4), 5.30 (s, 2 H, CH2Ph), 4.75 (t, 1 H, J
1
′,2
′a = J
1
′,2
′b = 6.5 Hz, H-1′), 4.56 (d, 2 H, H-2′a and H-2′b), 3.55 (q, 3 H, J
CH,F = 1.2 Hz, CH3O), 2.58 (s, 3 H, CH3) ppm. 13C NMR (75.4 MHz, CDCl3, 298 K): δ = 166.2 (CO), 163.1 (CO), 160.5, 146.0 (C-2, C-5), 131.8-127.2 (12 C,
C-arom.), 123.1 (q, 1 C, 1
J
C,F = 288, CF3), 114.2 (C-3), 110.5 (C-4), 84.7 [q, 1 C, 2
J
C,F = 28.2 Hz, (C(OMe)(CF3)Ph], 66.2 (CH2Ph), 65.0 (C-2′), 56.5 (C-1′), 55.5 (OCH3), 13.9 (CH3) ppm.
<A NAME="RG04606ST-19">19</A>
Koole LH.
Moody HM.
Broeders NLHL.
Quaedflieg PJLM.
Kuijpers WHA.
van Genderen MHP.
Coenen AJJM.
van der Wal S.
Buck HM.
J. Org. Chem.
1989,
54:
1657
<A NAME="RG04606ST-20">20</A>
Experimental Procedure for the Preparation of Fmoc-Activated Amino Acid Derivative
16 from 1.
To a stirred mixture of 1 (26 mg, 0.138 mmol) in dry pyridine (2 mL) at 0 °C, TMSCl (54 µL, 0.414 mmol) was
dropped and the reaction mixture stirred for 45 min at r.t. Then the reaction mixture
was cooled to 0 °C, 9-fluorenyl-methoxycarbonyl chloride (46 mg, 0.18 mmol) was added
and the mixture stirred for 1.5 h at r.t. Afterwards, H2O (0.1 mL) was added, the mixture stirred for 1 h at r.t., and then evaporated to
give 15 that was used in the next step without any purification. Crude 15 was dissolved in DMF, then DIEA (53 µL, 0.3 mmol) and PyBOP (88 mg, 0.168 mmol) were
added. The mixture was stirred for 1 h at r.t., then the solution was evaporated in
vacuo. The resulting residue was purified by column chromatography (EtOAc-PE, 1:1)
to give 16 (57 mg, 0.108 mmol, 78%) as a white solid. [α]D
20 +38 (c 0.84, CH2Cl2). 1H NMR (300 MHz, CDCl3, 298 K): δ = 7.57-7.27 (m, 12 H, H-arom.), 6.74 (s, 1 H, H-4), 5.56 (d, 1 H, J
NH,1
′ = 7.5 Hz, NHFmoc) 4.90 (br s, 1 H, H-1′), 4.51 (d, 2 H, J = 6.5 Hz, CH2 of Fmoc), 4.22 (t, 1 H, CH of Fmoc), 3.94 (br m, 2 H, H-2′a and H-2′b), 2.62 (CH3) ppm.
13C NMR (75.4 MHz, CDCl3, 298 K): δ = 163.4 (CO), 159.5 (C-2), 156.1 (CO of Fmoc), 152.3 (C-5), 143.7, 143.4,
141.4, 128.8, 127.8, 127.1, 124.9, 120.4, 120.0, 107.3 (18 C, C-arom.), 108.8 (C-3),
108.4 (C-4), 67.0 (CH2 of Fmoc), 63.3 (C-2′), 50.9 (C-1′), 47.2 (CH of Fmoc), 14.2 (CH3).
<A NAME="RG04606ST-21">21</A>
The OBt esters of protected amino acids are not isolable and must be generated in
situ. Only less reactive OPfp esters are commercially available, see: Novabiochem,® 2004/5 catalogue.