Subscribe to RSS
DOI: 10.1055/s-2006-941570
Stereoselective Synthesis of Chiral Furan Amino Acid Analogues of d- and l-Serine from d-Sugars
Publication History
Publication Date:
22 May 2006 (online)
Abstract
The synthesis of chiral furan amino acid analogues of d- and l-serine is reported. The developed methodology starting from d-xylose affords the corresponding amino acid derivative analogue of d-serine enantiomerically pure. Starting from d-arabinose, the corresponding analogue of l-serine was isolated in 92.3% enantiomeric purity. The analogue of d-serine was transformed into a stable Fmoc activated derivative ready to be incorporated into peptides.
Key words
furan amino acids - cyclic sulfites - serine analogues - polyhydroxyalkyl furans - α-furfuryl amines
-
1a Recent Advances in Peptidomimetics; Tetrahedron Symposia-in-Print, No. 83;
Aubé J. Tetrahedron 2000. 56: p.50 -
1b
Robinson JA. Synlett 2000, 429 -
1c
Smith AB.Favor DA.Sprengeler PA.Guzman MC.Carrol PJ.Furst GT.Hirschmann R. Bioorg. Med. Chem. 1999, 7: 9 -
1d
Hanessian S.McNaughton-Smith G.Lombart H.-G.Lubell WD. Tetrahedron 1997, 53: 12789 -
1e
Giannis A.Kolter T. Angew. Chem., Int. Ed. Engl. 1993, 32: 1244 -
1f
Kinshenbaum K.Zuckerman RN.Dill KA. Curr. Opin. Struct. Biol. 1999, 9: 530 -
1g
Gellman SH. Acc. Chem. Res. 1998, 31: 173 -
2a
Singh RK.Sinha N.Jain S.Salman M.Nazqui F.Anand N. Tetrahedron 2005, 61: 8868 -
2b
You S.-L.Razavi H.Kelly JW. Angew. Chem. Int. Ed. 2003, 42: 83 -
2c
You S.-L.Kelly JW. J. Org. Chem. 2003, 68: 9506 -
2d
You S.-L.Kelly JW. Chem. Eur. J. 2004, 10: 71 -
2e
Davidson BS. Chem. Rev. 1993, 93: 1771 -
2f
Wipf P. Chem. Rev. 1993, 95: 2115 -
2g
Phillips AJ.Uto Y.Wipf P.Reno MJ.Williams DR. Org. Lett. 2000, 2: 1165 -
3a
Bertran A.Pattendem G. Heterocycles 2002, 58: 521 -
3b
Wang W.Nan F. J. Org. Chem. 2003, 68: 1636 -
3c
You S.-Li.Deechongkit S.Kelly JW. Org. Lett. 2004, 6: 2627 -
3d
Pattenden G.Thompson T. Tetrahedron Lett. 2002, 43: 2459 -
3e
Deeley J.Pattenden G. Chem. Commun. 2005, 797 -
4a
Moreno-Vargas AJ.Fernández-Bolaños JG.Fuentes J.Robina I. Tetrahedron Lett. 2001, 42: 1283 -
4b
Moreno-Vargas AJ.Jiménez-Barbero J.Robina I. J. Org. Chem. 2003, 68: 4138 -
5a
Silverman DN.Lindskog S. Acc. Chem. Res. 1988, 21: 30 -
5b
Greener B.Rose J. Chem. Commun. 1999, 2361 -
5c
Lehn JM. Supramolecular Chemistry: Concepts and Perspectives VCH; Weinheim: 1995. - 6
Cleland WW.Kreevoy MM. Science 1994, 264: 1887 -
7a
Clerici F.Gelmi ML.Gambini A. J. Org. Chem. 1999, 64: 5764 -
7b
Clerici F.Gelmi ML.Gambini A. J. Org. Chem. 2000, 65: 6138 -
7c
Clerici F.Gelmi ML.Gambini A.Nava D. Tetrahedron 2001, 57: 6429 -
7d
Avenoza A.Busto JH.Canal N.Peregrina JM. J. Org. Chem. 2005, 70: 330 -
7e
Avenoza A.Busto JH.Canal N.Peregrina JM.Pérez-Fernández M. Org. Lett. 2005, 7: 3597 -
8a
Sun X.-L.Kai T.Takayanagi H.Furuhata K. Synlett 1999, 1399 -
8b
Bushey ML.Haukaas MH.O’Doherty GA. J. Org. Chem. 1999, 64: 2984 -
8c
Saaby S.Bayón P.Aburel PS.Jørgensen KA. J. Org. Chem. 2002, 67: 4352 -
8d
Miyata O.Iba R.Hashimoto J.Naito T. Org. Biomol. Chem. 2003, 1: 772 - 9 For a review on α-furfuryl amine derivatives, see:
Zhou W.-S.Lu Z.-H.Xu Y.-M.Liao L.-X.Wang Z.-M. Tetrahedron 1999, 55: 11959 -
10a
Ciufolini MA.Wood CW. Tetrahedron Lett. 1986, 27: 5085 -
10b
Ciufolini MA.Hermann CYW.Dong Q.Shimizu T.Swaminathan S.Xi N. Synlett 1998, 105 -
11a
McMillan JB.Molinski TF. Org. Lett. 2002, 4: 1883 -
11b
Willis MC.Cutting GA.Piccio VJ.-D.Durbin MJ.John MP. Angew. Chem. Int. Ed. 2005, 44: 1543 - 11c Amino Acids, Peptides and Proteins Vol.1-28: Special Periodical Reports, Chemistry Society; London: 1968-1995.
- 12 For similar condensations between aldohexoses and ketohexoses with β-dicarbonyl compounds see:
García-González F. Adv. Carbohydr. Chem. 1956, 11: 97 - 13
Misra AK.Agnihotri G. Carbohydr. Res. 2004, 339: 1381 -
14a
Moreno-Vargas AJ.Robina I.Demange R.Vogel P. Helv. Chim. Acta 2003, 86: 1894 -
14b
Robina I.Moreno-Vargas AJ.Fernández-Bolaños JG.Fuentes J.Demange R.Vogel P. Bioorg. Med. Chem. Lett. 2001, 11: 2555 -
15a
For the same reaction on a similar but unstable cyclic sulfite giving only one diasteroisomer, see ref. 8d.
-
15b
Seki M.Mori K. Eur. J. Org. Chem. 1999, 2965 - For reviews on cyclic sulfite reactivity, see:
-
16a
Lohray BB. Synthesis 1992, 1035 -
16b
Byun H.-S.He L.Bittman R. Tetrahedron 2000, 56: 7051 - 19
Koole LH.Moody HM.Broeders NLHL.Quaedflieg PJLM.Kuijpers WHA.van Genderen MHP.Coenen AJJM.van der Wal S.Buck HM. J. Org. Chem. 1989, 54: 1657
References and Notes
Selected data for compound 7: [α]D 20 +99 (c 0.98, CH2Cl2). 1H NMR (300 MHz, CDCl3, 298 K): δ = 7.40-7.28 (m, 5 H, H-arom.), 6.75 (s, 1 H, H-4), 5.29 (s, 2 H, CH2Ph), 4.56 (d, 1 H, J 1 ′,2 ′ = 7.3 Hz, H-1′), 4.02 (m, 1 H, H-2′), 3.76 (dd, 1 H, J 3 ′a,3 ′b = 11.5 Hz, J 3 ′a,2 ′= 3.4 Hz, H-3′a), 3.72 (dd, 1 H, J 3 ′b,2 ′ = 5.2 Hz, H-3′b), 2.60 (s, 3 H, CH3) ppm. 13C NMR (75.4 MHz, CDCl3, 298 K): δ = 163.5 (CO), 160.4, 147.5 (C-2, C-5), 135.9, 128.6, 128.3, 128.2 (6 C-arom.), 114.2 (C-3), 110.9 (C-4), 71.9 (C-2′), 66.2 (CH2Ph), 62.9 (C-3′), 59.9 (C-1′), 14.3 (CH3) ppm. HRMS (CI): m/z calcd for C16H18N3O5 + H+: 332.1246; found: 332.1236.
18Selected data for compound 9: [α]D 20 +25 (c 2.62, CH2Cl2). 1H NMR (300 MHz, CDCl3, 298 K): δ = 7.42-7.36 (m, 10 H, H-arom.), 6.67 (s, 1 H, H-4), 5.30 (s, 2 H, CH2Ph), 4.75 (t, 1 H, J 1 ′,2 ′a = J 1 ′,2 ′b = 6.5 Hz, H-1′), 4.56 (d, 2 H, H-2′a and H-2′b), 3.55 (q, 3 H, J CH,F = 1.2 Hz, CH3O), 2.58 (s, 3 H, CH3) ppm. 13C NMR (75.4 MHz, CDCl3, 298 K): δ = 166.2 (CO), 163.1 (CO), 160.5, 146.0 (C-2, C-5), 131.8-127.2 (12 C, C-arom.), 123.1 (q, 1 C, 1 J C,F = 288, CF3), 114.2 (C-3), 110.5 (C-4), 84.7 [q, 1 C, 2 J C,F = 28.2 Hz, (C(OMe)(CF3)Ph], 66.2 (CH2Ph), 65.0 (C-2′), 56.5 (C-1′), 55.5 (OCH3), 13.9 (CH3) ppm.
20
Experimental Procedure for the Preparation of Fmoc-Activated Amino Acid Derivative 16 from 1.
To a stirred mixture of 1 (26 mg, 0.138 mmol) in dry pyridine (2 mL) at 0 °C, TMSCl (54 µL, 0.414 mmol) was dropped and the reaction mixture stirred for 45 min at r.t. Then the reaction mixture was cooled to 0 °C, 9-fluorenyl-methoxycarbonyl chloride (46 mg, 0.18 mmol) was added and the mixture stirred for 1.5 h at r.t. Afterwards, H2O (0.1 mL) was added, the mixture stirred for 1 h at r.t., and then evaporated to give 15 that was used in the next step without any purification. Crude 15 was dissolved in DMF, then DIEA (53 µL, 0.3 mmol) and PyBOP (88 mg, 0.168 mmol) were added. The mixture was stirred for 1 h at r.t., then the solution was evaporated in vacuo. The resulting residue was purified by column chromatography (EtOAc-PE, 1:1) to give 16 (57 mg, 0.108 mmol, 78%) as a white solid. [α]D
20 +38 (c 0.84, CH2Cl2). 1H NMR (300 MHz, CDCl3, 298 K): δ = 7.57-7.27 (m, 12 H, H-arom.), 6.74 (s, 1 H, H-4), 5.56 (d, 1 H, J
NH,1
′ = 7.5 Hz, NHFmoc) 4.90 (br s, 1 H, H-1′), 4.51 (d, 2 H, J = 6.5 Hz, CH2 of Fmoc), 4.22 (t, 1 H, CH of Fmoc), 3.94 (br m, 2 H, H-2′a and H-2′b), 2.62 (CH3) ppm.
13C NMR (75.4 MHz, CDCl3, 298 K): δ = 163.4 (CO), 159.5 (C-2), 156.1 (CO of Fmoc), 152.3 (C-5), 143.7, 143.4, 141.4, 128.8, 127.8, 127.1, 124.9, 120.4, 120.0, 107.3 (18 C, C-arom.), 108.8 (C-3), 108.4 (C-4), 67.0 (CH2 of Fmoc), 63.3 (C-2′), 50.9 (C-1′), 47.2 (CH of Fmoc), 14.2 (CH3).
The OBt esters of protected amino acids are not isolable and must be generated in situ. Only less reactive OPfp esters are commercially available, see: Novabiochem,® 2004/5 catalogue.