Abstract
On the basis of our chiral palladium enolate chemistry, efficient catalytic enantioselective fluorination reactions have been developed. These reactions can be carried out in environmentally friendly alcoholic solvents without any precaution to exclude water and moisture. The reaction was found applicable to a wide range of active methine compounds including β-ketoesters, β-ketophosphonates, and other related compounds (up to 99% ee). Furthermore, we succeeded in developing efficient fluorination reactions of 3-substituted oxindoles, which are found among many natural products. Interestingly, sequential fluorination-solvolysis reaction of a 3-nonsubstituted oxindol allowed monofluorination of an active methylene compound, and an optically active α-fluoroarylacetate was obtained (93% ee). To confirm the utility of these reactions, stereoselective synthesis of chiral fluorinated analogues of fundamental building blocks and catalytic asymmetric synthesis of BMS204352, which is a promising agent for the treatment of stroke, were demonstrated.
1 Introduction
2 Chiral Palladium Enolates for Fluorination Reactions
3 Catalytic Enantioselective Fluorination Reactions of β-Ketoesters
4 Reuse of the Pd Catalysts in the Fluorination Reactions Using Ionic Liquids as a Reaction Medium
5 Catalytic Enantioselective Fluorination of β-Ketophosphonates and Related Compounds
5.1 Fluorination of β-Ketophosphonates
5.2 Fluorination of Other Active Methine Compounds
6 Catalytic Enantioselective Fluorination Reactions of Oxindole Derivatives
7 Summary
Key words
asymmetric catalysis - fluorine - palladium - medicinal chemistry - ionic liquids
References and Notes
1a
Kirsch P.
Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications
Wiley-VCH;
Weinheim:
2004.
1b
Hiyama T.
Kanie K.
Kusumoto T.
Morizawa Y.
Shimizu M.
Organofluorine Compounds: Chemistry and Applications
Springer;
Berlin:
2000.
1c
Biomedical Frontiers of Fluorine Chemistry
Ojima I.
McCarthy JR.
Welch JT.
ACS Symposium Series 639, American Chemical Society;
Washington, DC:
1996.
For reviews:
1d
O’Hagan D.
Rzepa HS.
Chem. Commun.
1997,
645
1e
Smart BE.
J. Fluorine Chem.
2001,
109:
3
1f
Ismail FMD.
J. Fluorine Chem.
2002,
118:
27
1g
Nyffeler PT.
Durón SG.
Burkart MD.
Vincent SP.
Wong C.-H.
Angew. Chem. Int. Ed.
2005,
44:
192
1h
Shimizu M.
Hiyama T.
Angew. Chem. Int. Ed.
2005,
44:
214
2a
Asymmetric Fluoroorganic Chemistry: Synthesis, Application, and Future Directions
Ramachandran PV.
ACS Symposium Series 746, American Chemical Society;
Washington, DC:
2000.
2b
Enantiocontrolled Synthesis of Fluoro-Organic Compounds: Stereochemical Challenge and Biomedicinal Targets
Soloshonok VA.
Wiley;
New York:
1999.
3a
Mikami K.
Itoh Y.
Yamanaka M.
Chem. Rev.
2004,
104:
1
3b
Iseki K.
Tetrahedron
1998,
54:
13887
For representative examples of diastereoselective reactions, see:
4a
Iwaoka T.
Murohashi T.
Sato M.
Kaneko C.
Tetrahedron: Asymmetry
1992,
3:
1025
4b
Davis FA.
Kasu PVN.
Tetrahedron Lett.
1998,
39:
6135
4c
Enders D.
Faure S.
Potthoff M.
Runsink J.
Synthesis
2001,
15:
2307
Reviews of enantioselective fluorination reactions:
5a
Ibrahim H.
Togni A.
Chem. Commun.
2004,
1147
5b
Ma J.-A.
Cahard D.
Chem. Rev.
2004,
104:
6119
5c
Pihko PM.
Angew. Chem. Int. Ed.
2006,
45:
544
For catalytic asymmetric α-halogenation reactions, see:
5d
France S.
Weatherwax A.
Lectka T.
Eur. J. Org. Chem.
2005,
475
5e
Oestreich M.
Angew. Chem. Int. Ed.
2005,
44:
2324
5f
Bartoli G.
Bosco M.
Carlone A.
Locatelli M.
Melchiorre P.
Sambri L.
Angew. Chem. Int. Ed.
2005,
44:
6219
5g
Bertelsen S.
Halland N.
Bachmann S.
Marigo M.
Braunton A.
Jørgensen KA.
Chem. Commun.
2005,
4821 ; and references cited therein
6 For compound 1 , see: Fried F.
Sabo EF.
J. Am. Chem. Soc.
1954,
76:
1455
7 For compound 2 , see: Paulsen H.
Antons S.
Brandes A.
Lögers M.
Müller SN.
Naab P.
Schmeck C.
Schneider S.
Stoltefuß J.
Angew. Chem. Int. Ed.
1999,
38:
3373
8 For compound 3 , see: Hewawasam P.
Gribkoff VK.
Pendri Y.
Dworetzky SI.
Meanwell NA.
Martinez E.
Boissard CG.
Post-Munson DJ.
Trojnacki JT.
Yeleswaram K.
Pajor LM.
Knipe J.
Gao Q.
Perrone R.
Starrett JE.
Bioorg. Med. Chem. Lett.
2002,
12:
1023 ; and references cited therein
9 For compound 4 , see: Inagaki H.
Miyauchi S.
Miyauchi RN.
Kawato HC.
Ohki H.
Matsuhashi N.
Kawakami K.
Takahashi H.
Takemura M.
J. Med. Chem.
2003,
46:
1005
For selected examples, see:
10a
Shibata N.
Suzuki E.
Asahi T.
Shiro M.
J. Am. Chem. Soc.
2001,
123:
7001
10b
Mohar B.
Baudoux J.
Plaquevent J.-C.
Cahard D.
Angew. Chem. Int. Ed.
2001,
40:
4214
10c
Greedy B.
Paris J.-M.
Vidal T.
Gouverneur V.
Angew. Chem. Int. Ed.
2003,
42:
3291
11a
Hintermann L.
Togni A.
Angew. Chem. Int. Ed.
2000,
39:
4359
11b
Piana S.
Devillers I.
Togni A.
Rothlisberger U.
Angew. Chem. Int. Ed.
2002,
41:
979
11c
Frantz R.
Hintermann L.
Perseghini M.
Broggini D.
Togni A.
Org. Lett.
2003,
5:
1709
12 Kim D. Y., Park E. J.; Org. Lett .; 2002 , 4 : 545
For recent examples, see:
13a
Baba Y.
Ogoshi Y.
Hirai G.
Yanagisawa T.
Nagamatsu K.
Mayumi S.
Hashimoto Y.
Sodeoka M.
Bioorg. Med. Chem. Lett.
2004,
14:
2963
13b
Baba Y.
Mayumi S.
Hirai G.
Kawasaki H.
Ogoshi Y.
Yanagisawa T.
Hashimoto Y.
Sodeoka M.
Bioorg. Med. Chem. Lett.
2004,
14:
2969
13c
Baba Y.
Hirukawa N.
Tanohira N.
Sodeoka M.
J. Am. Chem. Soc.
2003,
125:
9740
For β-ketoesters, see:
14a
Ma J.-A.
Cahard D.
Tetrahedron: Asymmetry
2004,
15:
1007
14b
Shibata N.
Ishimaru T.
Nagai T.
Kohno J.
Toru T.
Synlett
2004,
1703
14c
Shibata N.
Kohno J.
Takai K.
Ishimaru T.
Nakamura S.
Toru T.
Kanemasa S.
Angew. Chem. Int. Ed.
2005,
44:
4204
14d For cyanoacetates, see: Kim HR.
Kim DY.
Tetrahedron Lett.
2005,
46:
3115
14e For β-ketophosphonates, see: Bernardi L.
Jørgensen KA.
Chem. Commun.
2005,
1324
14f
Kim SM.
Kim HR.
Kim DY.
Org. Lett.
2005,
7:
2309
15a
Enders D.
Hüttl MRM.
Synlett
2005,
991
15b
Marigo M.
Fielenbach D.
Braunton A.
Kjærsgaard A.
Jørgensen KA.
Angew. Chem. Int. Ed.
2005,
44:
3703
15c
Steiner DD.
Mase N.
Barbas CF.
Angew. Chem. Int. Ed.
2005,
44:
3706
15d
Beeson TD.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
8826
15e
Huang Y.
Walji AM.
Larsen CH.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
15051
16a
Sodeoka M.
Ohrai K.
Shibasaki M.
J. Org. Chem.
1995,
60:
2648
16b
Sodeoka M.
Tokunoh R.
Miyazaki F.
Hagiwara E.
Shibasaki M.
Synlett
1997,
463
16c
Sodeoka M.
Shibasaki M.
Pure Appl. Chem.
1998,
70:
411
16d
Hagiwara E.
Fujii A.
Sodeoka M.
J. Am. Chem. Soc.
1998,
120:
2474
16e
Fujii A.
Hagiwara E.
Sodeoka M.
J. Am. Chem. Soc.
1999,
121:
5450
16f
Fujii A.
Hagiwara E.
Sodeoka M.
J. Synth. Org. Chem. Jpn.
2000,
58:
728
17
Kumobayashi H.
Miura T.
Sayo N.
Saito T.
Zhang X.
Synlett
2001,
1055
18a
Hamashima Y.
Hotta D.
Sodeoka M.
J. Am. Chem. Soc.
2002,
124:
11240
18b
Hamashima Y.
Hotta D.
Umebayashi N.
Tsuchiya Y.
Suzuki T.
Sodeoka M.
Adv. Synth. Catal.
2005,
347:
1576
18c
Sodeoka M.
Hamashima Y.
Bull. Chem. Soc. Jpn.
2005,
78:
941
19
Hamashima Y.
Sasamoto N.
Hotta D.
Somei H.
Umebayashi N.
Sodeoka M.
Angew. Chem. Int. Ed.
2005,
44:
1525
20 A space-filling model depicted in Scheme
[3 ]
was generated based on MM3 calculation method using CAChe 5.0. See also ref. 18b.
21 In the case of the Michael reaction, no reaction occurred with the Pd complexes 6 . The addition of a strong protic acid, such as TfOH, which promotes the reaction cooperatively with the Pd enolate as an activator of the enone, was necessary.
22
Hamashima Y.
Yagi K.
Takano H.
Tamás L.
Sodeoka M.
J. Am. Chem. Soc.
2002,
124:
14530
23
Hamashima Y.
Suzuki T.
Takano H.
Shimura Y.
Tsuchiya Y.
Moriya K.
Goto T.
Sodeoka M.
Tetrahedron
2006, in press
24 For the use of α-substituted α-fluoro-β-ketoester in a drug design: Denis A.
Bretin F.
Fromentin C.
Bonnet A.
Piltan G.
Bonnefoy A.
Agouridas C.
Bioorg. Med. Chem. Lett.
2000,
10:
2019
For stereoselective reduction of ketones, see:
25a
Fujita M.
Hiyama T.
J. Am. Chem. Soc.
1985,
107:
8294
25b
Kitazume T.
Kobayashi T.
Yamamoto T.
Yamazaki T.
J. Org. Chem.
1987,
52:
3218
26 Review on the reuse of chiral catalysts: Fan Q.-H.
Li Y.-M.
Chan ASC.
Chem. Rev.
2002,
102:
3385
27a
Dupont J.
de Souza RF.
Suarez PAZ.
Chem. Rev.
2002,
102:
3667
27b
Sheldon R.
Chem. Commun.
2001,
2399
27c
Wasserscheid P.
Keim W.
Angew. Chem. Int. Ed.
2000,
39:
3772
27d
Welton T.
Chem. Rev.
1999,
99:
2071
28
Hamashima Y.
Takano H.
Hotta D.
Sodeoka M.
Org. Lett.
2003,
5:
3225
29 Recently, Kim et al. also reported the reuse of the palladium complexes in their catalytic enantioselective fluorination. See ref. 14f.
30 α-Fluorophosphonates have been used as mimics of a phosphate moiety. For a general review, see: Berkowitz DB.
Bose M.
J. Fluorine Chem.
2001,
112:
13
For example:
31a
Nieschalk J.
O’Hagan D.
J. Chem. Soc., Chem. Commun.
1995,
719
31b
Li C.
Wu L.
Otaka A.
Smyth MS.
Roller PP.
Burke TR.
den Hertog J.
Zhang Z.-Y.
Biochem. Biophys. Res. Commun.
1995,
216:
976
31c
Yokoyama T.
Yamagishi T.
Matsumoto K.
Shibuya S.
Tetrahedron
1996,
52:
11725
31d
Berkowitz DB.
Bose M.
Pfannenstiel TJ.
Doukov T.
J. Org. Chem.
2000,
65:
4498
For selected examples, see:
32a
Kotoris CC.
Wen W.
Lough A.
Taylor SD.
J. Chem. Soc., Perkin Trans. 1
2000,
8:
1271
32b
Ruiz M.
Ojea V.
Quintela JM.
Guillín JJ.
Chem. Commun.
2002,
1600
33
Hamashima Y.
Suzuki T.
Shimura Y.
Shimizu T.
Umebayashi N.
Tamura T.
Sasamoto N.
Sodeoka M.
Tetrahedron Lett.
2005,
46:
1447
34 Hamashima, Y.; Suzuki, T.; Goto, T.; Sodeoka, M. manuscript in preparation.
For Ru, see:
35a
Murahashi S.-I.
Naoto T.
Taki H.
Mizuno M.
Takaya H.
Komiya S.
Mizuno Y.
Oyasato N.
Hiraoka M.
Hirano M.
Fukuoka A.
J. Am. Chem. Soc.
1995,
117:
12436
For Rh, see:
35b
Sawamura M.
Hamashima H.
Ito Y.
J. Am. Chem. Soc.
1992,
114:
8295
35c
Kuwano R.
Miyazaki H.
Ito Y.
J. Organomet. Chem.
2000,
603:
18
35d For Pd, see: Takenaka K.
Uozumi Y.
Org. Lett.
2004,
6:
1833 ; and references therein
36
Hamashima Y.
Suzuki T.
Takano H.
Shimura Y.
Sodeoka M.
J. Am. Chem. Soc.
2005,
127:
10164
For the synthesis of fluorous analogues of indole alkaloids, see:
37a
Shibata N.
Tarui T.
Doi Y.
Kirk KL.
Angew. Chem. Int. Ed.
2001,
40:
4461
37b For a stoichiometric enantioselective fluorination of oxindoles, see ref. 10a.
For stoichiometric reactions, see:
38a
Shibata N.
Ishimaru T.
Suzuki E.
Kirk KL.
J. Org. Chem.
2003,
68:
2494
38b
Zoute L.
Audouard C.
Plaquevent J.-C.
Cahard D.
Org. Biomol. Chem.
2003,
1:
1833
38c Recently, Shibata and Toru et al. reported a highly enantioselective catalytic synthesis of 3 using a chiral Ni complex. See ref. 14c.
39 Hamashima, Y.; Moriya, K.; Sodeoka, M. unpublished results.