Der Nuklearmediziner 2006; 29(3): 151-158
DOI: 10.1055/s-2006-942267
Funktionell-morphologische Kombinationsbildgebung

© Georg Thieme Verlag Stuttgart · New York

PET/CT in der Strahlentherapieplanung

PET/CT in Radiation Therapy PlanningA.-L. Grosu1 , B. J. Krause2 , U. Nestle3
  • 1Klinik und Poliklinik für Strahlentherapie und Radiologische Onkologie, Klinikum rechts der Isar,
    Technische Universität München
  • 2Klinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München
  • 3Klinik für Nuklearmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar
Further Information

Publication History

Publication Date:
15 September 2006 (online)

Zusammenfassung

Die Integration der PET in die Strahlentherapieplanung beeinflusst die Zielvolumendefinition bei der Strahlentherapie vieler solider Tumoren. In Zukunft könnte sie vor allem durch eine präzise Definition der Tumorgrenzen und die Darstellung wichtiger biologischer Vorgänge weitere Bedeutung gewinnen. Experimentelle und klinische Untersuchungen, sowie Kosten-Nutzen-Analysen sind allerdings notwendig, um den Stellenwert dieser Untersuchung für die Strahlentherapieplanung genauer zu definieren. FDG-PET hat einen signifikanten Einfluss auf die Zielvolumendefinition bei Lungentumoren, insbesondere in der Diagnose von pathologischen Lymphknoten und in der Abgrenzung des Tumors von einer Atelektase. Bei High-grade-Gliomen und Meningiomen hat Aminosäre-PET eine hohe Bedeutung für die Definition des Zielvolumens durch die präzise Unterscheidung von Tumor- und Normalgewebe. Bei Kopf-Hals-Tumoren, Zervixkarzinomen, Prostatakarzinomen ist der Stellenwert der PET noch offen. FDG-PET könnte der CT und MRI in der Diagnose von Lymphknotenmetastasen, der Suche des Primärtumors bei CUP und der differenzialdiagnostischen Abgrenzung des Primär- oder Rezidivtumors von einer Nekrose nach Therapie überlegen sein. Hierdurch könnten die Definition des Zielvolumens und die Schonung des Normalgewebes maßgeblich beeinflusst werden. Für andere Tumorentitäten (gastrointestinale Tumoren, Lymphome, Sarkome etc.) sind die Daten aus der Literatur noch unzureichend. Die Darstellung von Tumorhypoxie, Proliferation, Angiogenese, Apoptose oder Genexpression kann zur Identifikation strahlenbiologisch unterschiedlicher Areale eines inhomogenen Tumors führen. Die biologische Bildgebung könnte so der IMRT die Informationen für eine gezielt inhomogene Dosisverteilung liefern, um im Rahmen des so genannten „Dose Painting” Gebiete vermeintlich höherer Strahlenresistenz gezielt mit höheren Dosen zu behandeln. Diese Hypothese wurde allerdings bislang nicht in klinischen und experimentellen Studien untersucht.

Abstract

Regarding treatment planning in radiotherapy PET offers advantages in terms of tumor delineation and the description of biological processes. To define the real impact of this investigation in radiation treatment planning, following experimental, clinical and cost/benefit analysis are required. FDG-PET has a significant impact on GTV and PTV delineation in lung cancer and can detect lymph node involvement and differentiation of malignant tissue from atelectasis. In high-grade gliomas and meningiomas, methionine-PET helps to define the GTV and differentiate tumor from normal tissue. In head and neck cancer, cervix cancer and prostate cancer the value of FDG-PET for radiation treatment planning is still under investigation. For example, FDG-PET can be superior to CT and MRI in the detection of lymph node metastases in head and neck, unknown primary cancer and differentiation of viable tumor tissue after treatment. Therefore, it could play an important role in GTV definition and sparing of normal tissue. For other entities like gastro-intestinal cancer, lymphomas, sarcoma etc., the data of the literature are yet insufficient. The imaging of hypoxia, cell proliferation, angiogenesis, apoptosis and gene expression leads to the identification of different areas of a biologically heterogeneous tumor mass that can be individually targeted using IMRT. In addition, a biological dose distribution can be generated, the so-called dose painting. However, systematical experimental and clinical trials are necessary to validate this hypothesis.

Literatur

  • 1 Armstrong J G. Target volume definition for three-dimensional conformal radiation therapy of lung cancer.  Br J Radiol. 1998;  71 587-594
  • 2 Baum R P, Hellwig D, Mezzetti M. Position of nuclear medicine modalities in the diagnostic workup of cancer patients: lung cancer.  Q J Nucl Med Mol Imaging. 2004;  48 119-142
  • 3 Beer A J, Haubner R, Wolf I, Goebel M, Luderschmidt S, Niemeyer M, Grosu A L, Weber W A, Schwaiger M. PET-based Dosimetry in Man of (18F)Galacto-RGD, a New Radiotracer for Imaging of alpha-v-beta 3 Expression.  The Journal of Nuclear Medicine. 2006;  47 763-769
  • 4 Bradley J, Thorstad W L, Mutic S. et al . Impact of 18FDG-PET on radiation therapy volume delineation in non-small cell lung cancer.  Int J Radiat Oncol Biol Phys. 2004;  59 78-86
  • 5 Buck A K, Hetzel M, Schirrmeister H. et al . Clinical relevance of imaging proliferative activity in lung nodules.  Eur J Nucl Med Imaging. 2005;  32 525-533
  • 6 Caldwell C B, Mah K, Ung Y C. et al . Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: impact of 18FDG-Hybrid PET fusion.  Int J Radiat Oncol Biol Phys. 2001;  51 923-931
  • 7 Caldwell C B, Mah K, Skinner M. et al . Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET.  Int J Radiat Oncol Biol Phys. 2003;  55 1381-1393
  • 8 Chao K S, Bosch W R, Mutic S. et al . A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy.  Int J Radiat Oncol Biol Phys. 2001;  49 1171-1182
  • 9 Ciernik I F, Dizendorf E, Baumert B G. et al . Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study.  Int J Radiat Oncol Biol Phys. 2003;  57 853-863
  • 10 Di Chiro G. Positron Emission Tomography Using F-18 Fluorodeoxyglucose in Brain Tumors. A Powerful Diagnostic and Prognostic Tool.  Invest Radiol. 1986;  22 360-371
  • 11 Fox J L, Rengan R, O'Meara W. et al . Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer?.  Int J Radiat Oncol Biol Phys. 2005;  62 70-75
  • 12 Gross M W, Weber W, Feldmann H J, Bartenstein P, Schwaiger M, Molls M. The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas.  Int J Radiat Oncol Biol Phys. 1998;  41 989-995
  • 13 Grosu A L, Kneschaurek P, Schlegel W. Stereotactic Radiotherapy. In: Schlegel W, Bortfeld T, Grosu AL (eds). New Technologies in Radiation Oncology. Springer, Heidelberg, Berlin, New York 2005; 267-276
  • 14 Grosu A L, Piert M, Molls M. Experience of PET for Target Localisation in Radiation Oncology.  British Journal of Radiology. 2005;  78 18-32
  • 15 Grosu A L, Weber W A, Feldmann H J, Wuttke B, Bartenstein P, Gross M, Lumenta C H, Schwaiger M, Molls M. First Experience with I-123-Alpha-Methyl-Tyrosine SPECT in the 3-D Radiation Treatment Planning of Brain Gliomas.  Int J Rad Oncol Biol Phys. 2000;  47 517-527
  • 16 Grosu A L, Feldmann H J, Dick S, Dzewas B, Nieder C, Gumprecht H, Frank A M, Schwaiger M, Molls M, Weber W A. Implications of IMT-SPECT for postoperative radiation treatment planning in patients with gliomas.  Int J Rad Oncol Biol Phys. 2002;  54 842-854
  • 17 Grosu A L, Lachner R, Wiedenmann N, Stärk S, Thamm R, Kneschaurek P, Schwaiger M, Molls M, Weber W A. Validation of a Method for Automatic Fusion of CT- and C11-Methionine-PET Datasets of the Brain for Stereotactic Radiotherapy Using a LINAC. First Clinical Experience.  Int J Rad Oncol Biol Phys. 2003;  56 1450-1463
  • 18 Grosu A L, Weber A W, Riedel E, Jeremic B, Nieder C, Franz M, Gumprecht H, Jaeger R, Schwaiger M, Molls M. L-(Methyl-11C) Methionine Positron Emissions Tomography for Target Delineation in Resected High Grade Gliomas before Radiation Therapy.  Int J Rad Oncol Biol Phys. 2005;  63 64-74
  • 19 Grosu A L, Weber W A, Franz M, Stärk S, Schwaiger M, Molls M, Nieder C. Re-Irradiation of Recurrent High Grade Gliomas Using Amino-Acids-PET(SPECT)/CT/MRI Image Fusion to Determine Gross Tumor Volume for Stereotactic Fractionated Radiotherapy.  Int J Rad Oncol Biol Phys. 2005;  63 511-519
  • 20 Grosu A L, Weber W A, Astner S, Adam M, Krause B J, Schwaiger M, Molls M, Nieder C. 11C-Methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy.  Int J Rad Oncol Biol Phys. 2006;  ,  (in press)
  • 21 International Commission on Radiation Units and Measurements .Prescribing, recording and reporting photon beam therapy. ICRU report No. 50. ICRU, Bethesda 1993
  • 22 Julow J, Major T, Emri M, Valalik I, Sagi S, Mangel L, Nemeth G, Tron L, Varallyay G, Solymosi D, Havel J, Kiss T. The application of image fusion in stereotactic brachytherapy of brain tumours.  Acta Neurochir (Wien). 2000;  142 1253-1258
  • 23 Kiffer J D, Berlangieri S U, Scott A M. et al . The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer.  Lung Cancer. 1998;  19 167-177
  • 24 Nestle U, Walter K, Schmidt S. et al . 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis.  Int J Radiat Oncol Biol Phys. 1999;  44 593-597
  • 25 Nestle U, Hellwig D, Schmidt S. et al . 2-Deoxy-2-[18F]fluoro-D-glucose positron emission tomography in target volume definition for radiotherapy of patients with non-small cell lung cancer.  Mol Imaging Biol.. 2002;  4 257-263
  • 26 Nestle U, Kremp S, Schaefer-Schuler A. et al . Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer.  J Nucl Med. 2005;  46 1342-1348
  • 27 Nestle U, Schaefer-Schuler A, Kremp S, Bock S, Hellwig D, Rübe C, Kirsch C -M. [Comparison of different methods for Contouring of FDG positive mediastinal lymph nodes in radiotherapy planning of non small cell lung cancer].  Nuklearmedizin. 2006;  45 A44
  • 28 Nuutinen J, Sonninen P, Lehikoinen P, Sutinen E, Valavaara R, Eronen E, Norrgard S, Kulmala J, Teras M, Minn H. Radiotherapy treatment planning and long-term follow-up with [(11)C]methionine PET in patients with low-grade astrocytoma.  Int J Radiat Oncol Biol Phys. 2000;  48 43-52
  • 29 Paulino A C, Johnstone P A. FDG-PET in radiotherapy treatment planning: Pandora's box.  Int J Radiat Oncol Biol Phys. 2004;  59 4-5
  • 30 Reske S N, Kotzerke J. DFG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, “Onko-PET III”, 21 July and 19 September 2000.  Eur J Nucl Med. 2001;  28 1707-1723
  • 31 Rischin D, Peters L, Hicks R. et al . Phase I trial of concurrent tirapazamine, cisplatin, and radiotherapy in patients with advanced head and neck cancer.  J Clin Oncol. 2001;  19 535-542
  • 32 Steenbakkers R JHM, Duppen J C, Fitton I. et al . Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis.  Int J Radiat Oncol Biol Phys. 2005;  77 182-190
  • 33 Valk P E, Abella-Columna E, Haseman M K, Pounds T R, Tesar R D, Myers R W. et al . Whole body PET imaging with [18F]fluorodeoxyglucose in management of recurrent colorectal cancer.  Arch Surg. 1999;  134 503-511
  • 34 Vanuytsel L J, Vansteenkiste J F, Stroobants S G. et al . The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer.  Radiother Oncol. 2000;  55 317-324
  • 35 Vansteenkiste J, Fischer B M, Dooms C. et al . Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review.  Lancet Oncol. 2004;  5 531-540
  • 36 Weber W A, Dick S, Reidl G, Dzewas B, Busch R, Feldmann H J, Molls M, Lumenta C, Schwaiger M, Grosu A L. Correlation between postoperative 3-(123I)-Iodo-L-alpha-methyltyrosine uptake and survival in patients with gliomas.  The Journal of Nuclear Medicine. 2001;  42 1144-1150
  • 37 Weber W A, Wester H J, Grosu A L, Herz M, Dzewas B, Feldmann H J, Molls M, Stöcklin G, Schwaiger M. O-2(18F)Fluoretihyl-L-tyrosine and L-(methyl-11C)-methionine uptake in brain tumors: initial results of a comparative study.  Eur J Nucl Med. 2000;  27 542-549

PD Dr. med. A.-L. Grosu

Klinik und Poliklinik für Strahlentherapie und Radiologische Onkologie ·
Klinikum rechts der Isar · Technische Universität München

Ismaninger Str. 22

81675 München

Phone: +49/89/4 14 00

Email: anca-ligia.grosu@lrz.tum.de

    >