References and Notes
1a
Genov M.
Kostova K.
Dimitrov V.
Tetrahedron: Asymmetry
1997,
8:
1607
1b
Genov M.
Dimitrov V.
Ivanova V.
Tetrahedron: Asymmetry
1997,
8:
3703
1c
Knollmüller M.
Ferencic M.
Gärtner P.
Tetrahedron: Asymmetry
1999,
10:
3969
2a
Pu L.
Yu H.-B.
Chem. Rev.
2001,
101:
757
2b
Pu L.
Tetrahedron
2003,
59:
9873
2c
Soai K.
Nlwa S.
Chem. Rev.
1992,
92:
833
2d
Noyori R.
Kitamura M.
Angew. Chem., Int. Ed. Engl.
1991,
30:
49
2e
Noyori R.
Asymmetric Catalysis in Organic Synthesis
Wiley;
New York:
1994.
Chap. 5.
3a
Schmidt B.
Seebach D.
Angew. Chem., Int. Ed. Engl.
1991,
30:
99
3b
Schmidt B.
Seebach D.
Angew. Chem., Int. Ed. Engl.
1991,
30:
1321
3c
Seebach D.
Beck AK.
Schmidt B.
Wang YM.
Tetrahedron
1994,
50:
4363
3d
Weber B.
Seebach D.
Tetrahedron
1994,
50:
7473
3e
Seebach D.
Pichota A.
Beck AK.
Pinkerton AB.
Litz T.
Karjalainen J.
Gramlich V.
Org. Lett.
1999,
1:
55
3f
Walsh PJ.
Acc. Chem. Res.
2003,
36:
739
3g
Mori M.
Nakai T.
Tetrahedron Lett.
1997,
38:
6233
3h
Zhang F.-Y.
Yip C.-W.
Cao R.
Chan ASC.
Tetrahedron: Asymmetry
1997,
8:
585
3i
Zhang F.-Y.
Chan ASC.
Tetrahedron: Asymmetry
1997,
8:
3651
3j
Ding K.
Ishii A.
Mikami K.
Angew. Chem. Int. Ed.
1999,
38:
497
3k
Mikami K.
Terada M.
Korenaga T.
Matsumoto Y.
Ueki M.
Angeland R.
Angew. Chem. Int. Ed.
2000,
39:
3532
3l
Mikami K.
Angeland R.
Ding K.
Ishii A.
Tanaka A.
Sawada N.
Kudo K.
Senda M.
Chem. Eur. J.
2001,
7:
730
3m
Costa AM.
Jimeno C.
Gavenonis J.
Carroll PJ.
Walsh PJ.
J. Am. Chem. Soc.
2002,
124:
6929
3n
Ding K.
Du H.
Yuan Y.
Long J.
Chem. Eur. J.
2004,
10:
2872
3o
Kitajima H.
Ito K.
Katsuki T.
Chem. Lett.
1996,
343
3p
Kitajima H.
Ito K.
Katsuki T.
Bull. Chem. Soc. Jpn.
1997,
70:
207
3q
Huang W.-S.
Hu Q.-S.
Pu L.
J. Org. Chem.
1998,
63:
1364
3r
Li Z.-B.
Pu L.
Org. Lett.
2004,
6:
1065
3s
Hatano M.
Miyamoto T.
Ishihara K.
Adv. Synth. Catal.
2005,
347:
1561
4a
Delair P.
Einhorn C.
Einhorn J.
Luche JL.
J. Org. Chem.
1994,
59:
4680
4b
Yamakawa M.
Noyori R.
J. Am. Chem. Soc.
1995,
117:
6327
4c
Dai WM.
Zhu HJ.
Hao XJ.
Tetrahedron: Asymmetry
1996,
7:
1245
4d
Bringmann G.
Breuning M.
Tetrahedron: Asymmetry
1998,
9:
667
4e
Cho BT.
Chun YS.
Tetrahedron: Asymmetry
1998,
9:
1489
4f
Paleo MR.
Cabeza I.
Sardina FJ.
J. Org. Chem.
2000,
65:
2108
4g
Ko D.-H.
Kim KH.
Ha D.-C.
Org. Lett.
2002,
4:
3759
4h
Nugent WA.
Org. Lett.
2002,
4:
2133
5a
Rijnberg E.
Jastrzebski JTBH.
Janssen MD.
Boersma J.
Van Koten G.
Tetrahedron Lett.
1994,
35:
6521
5b
Jin MJ.
Ahn SJ.
Lee KS.
Tetrahedron Lett.
1996,
37:
8767
5c
Anderson JC.
Harding M.
Chem. Commun.
1998,
393
6a
Balsells J.
Walsh PJ.
J. Am. Chem. Soc.
2000,
122:
3250
6b
Balsells J.
Walsh PJ.
J. Am. Chem. Soc.
2000,
122:
1802
6c
Hwang C.-D.
Uang B.-J.
Tetrahedron: Asymmetry
1998,
9:
3979
6d
Qiu J.
Guo C.
Zhang X.
J. Org. Chem.
1997,
62:
2665
6e
Prieto O.
Ramon DJ.
Yus M.
Tetrahedron: Asymmetry
2000,
11:
1629
6f
Jeon SJ.
Li H.
Garcia C.
LaRochelle LK.
Walsh PJ.
J. Org. Chem.
2005,
70:
448
7a
Faux N.
Razafimahefa D.
Goetgheluck SP.
Brocarda J.
Tetrahedron: Asymmetry
2005,
16:
1189
7b
Tanyeli C.
Sunbul M.
Tetrahedron: Asymmetry
2005,
16:
2039
8a
Aviron-Violet P.
Colleuille Y.
Varagnat J.
J. Mol. Catal.
1979,
5:
41
8b
Okada Y.
Minami T.
Yamamoto T.
Ichikawa J.
Chem. Lett.
1992,
547
8c
Molander GA.
Burke JP.
Carroll PJ.
J. Org. Chem.
2004,
69:
8062
For the chiral ligand including achiral cyclopropane moiety, see:
8d
Sibi MP.
Ji J.
J. Org. Chem.
1997,
62:
3800
8e
Sibi MP.
Chen J.
J. Am. Chem. Soc.
2001,
123:
9472
8f
Sibi MP.
Ma Z.
Jasperse CP.
J. Am. Chem. Soc.
2004,
126:
718
9
cis
-Cyclopropane Aminoester 7a-d; Typical Procedure
To a solution of secondary amine (60 mmol) in MeOH (50 mL) was added 5 N HCl-MeOH (4 mL, 20 mmol), followed by 6 (3.12 g, 20 mmol) and NaBH3CN (1 g, 16 mmol). The resulting solution was stirred at r.t. for 16 h, then concentrated HCl was added until pH <2, and the MeOH was removed in vacuo. The residue was taken up in H2O (15 mL) and extracted with Et2O (3 × 20 mL). The aqueous solution was brought to pH >10 with 20% aq NaOH and extracted with Et2O (5 × 15 mL). The combined extracts were dried over MgSO4 and concentrated under reduced pressure to give 7a-d in 90-95% yields.
cis
-Cyclopropane Aminoalcohol 9a-9d; Typical Procedure
Mg (0.6 g, 25.0 mmol) and a very small amount of I2 were added to anhyd THF (20 mL). A solution of chlorobenzene (3.14 g, 20 mmol) in THF (10 mL) was added slowly dropwise. Once the reaction began, the rest of the chloro-benzene solution was added at a rate that maintained a gentle reflux. After the addition was complete, the mixture was refluxed for 20 min then cooled to -15 °C. Compound 7
(5 mmol) was dissolved in anhyd THF (5 mL) and added to the prepared Grignard mixture. The resulting solution was stirred at r.t. for 12 h. The reaction was quenched with a sat. solution of NH4Cl, and the mixture was extracted several times with Et2O. The combined organic phases was dried over MgSO4 and concentrated under reduced pressure. The residue was purified by flash chromatography (hexane-EtOAc, 1:2) to afford 9a and 9b as white crystals.
8: Oil; [α]D
18 +49.25 (c 0.00201, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.85-0.87 (m, 1 H), 1.06 (s, 3 H), 1.06 (s, 3 H), 2.28 (s, 6 H), 2.33-2.35 (m, 2 H), 3.30-3.34 (m, 1 H), 3.83-3.85 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 15.5, 20.4, 25.5, 29.3, 29.6, 45.0, 55.0, 59.3. HRMS (ESI): m/z calcd for C9H20NO [M+]: 158.1539; found: 158.1543.
9a: Mp 102-103 °C; [α]D
18 +63.5 (c 0.01021, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.91 (s, 3 H), 0.93-0.99 (m, 1 H), 1.22 (s, 3 H), 1.75 (d, 1 H, J = 9.5 Hz), 2.14 (s, 6 H), 2.41-2.45 (m, 1 H), 2.62-2.66 (m, 1 H), 7.09-7.11 (m, 2 H), 7.12-7.16 (m, 4 H), 7.22-7.27 (m, 4 H). 13C NMR (125 MHz, CDCl3): δ = 15.6, 20.2, 25.9, 30.2, 38.4, 44.2, 55.0, 125.5, 125.7, 125.9, 126.0, 127.6, 127.7, 149.0, 152.0. HRMS (EI): m/z calcd for C21H28NO [M + H+]: 310.2165; found: 310.2164.
9b: Mp 112-113 °C; [α]D
18 +14.1 (c 0.01508, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.91 (s, 1 H), 0.92-1.02 (m, 1 H), 1.22 (s, 3 H), 1.61-1.64 (m, 3 H), 1.65-1.74 (m, 3 H), 2.40-2.91 (m, 5 H), 2.93-2.95 (m, 1 H), 7.09-7.16 (m, 2 H), 7.22-7.28 (m, 4 H), 7.50-7.56 (m, 4 H). 13C NMR (125 MHz, CDCl3): δ = 15.5, 20.1, 23.3, 26.5, 30.1, 38.3, 51.3, 52.9, 125.3, 125.7, 125.9, 127.6, 127.7, 149.1, 152.1. HRMS (ESI): m/z calcd for C23H30NO [M + H+]: 336.2321; found: 336.2322.
9c: Crystals; mp 162-163 °C; [α]D
18 +167.6 (c 0.00816, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.89 (s, 1 H), 1.00-1.05 (m, 1 H), 1.16 (s, 3 H), 1.20-1.37 (m, 4 H), 1.84 (d, 1 H, J = 9.0 Hz), 2.46-2.50 (m, 1 H), 2.56-2.61 (m, 1 H), 7.09-7.14 (m, 2 H), 7.23-7.27 (m, 4 H), 7.52-7.60 (m, 4 H), 7.78 (br, 1 H). 13C NMR (125 MHz, CDCl3): δ = 15.4, 20.0, 24.1, 25.1, 25.3, 30.3, 37.3, 53.5, 54.7, 125.63, 125.66, 125.74, 125.9, 127.5, 127.7 149.3, 152.0. HRMS (ESI): m/z calcd for C24H32NO [M + H+]: 350.2478; found: 350.2479.
9d: Crystals; mp 156-157 °C; [α]D
18 +158.5 (c 0.00928, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.94 (s, 1 H), 0.93-1.05 (m, 1 H), 1.17 (s, 3 H), 1.88 (d, 1 H, J = 9.0 Hz), 2.35 (br, 2 H), 2.52 (br, 2 H), 2.56-2.60 (m, 1 H), 2.65-2.69 (m, 2 H), 3.30 (br, 2 H), 3.48-3.52 (m, 2 H), 7.11-7.15 (m, 2 H), 7.24-7.27 (m, 4 H), 7.51-7.61 (m, 4 H). 13C NMR (125 MHz, CDCl3): δ = 15.3, 20.1, 24.5, 30.3, 37.1, 52.64, 54.55, 66.2, 125.5, 125.6, 125.8, 126.2, 127.7, 127.9, 148.9, 151.6. HRMS (ESI): m/z calcd for C23H30NO2 [M + H+]: 352.2271; found: 352.2272.
Diethylzinc Addition to Aldehydes; General Procedure
The chiral ligand (0.1 mmol) was dissolved in hexane (3 mL), cooled to -15 °C, and diethylzinc (1.5 M toluene solution; 1.5 mL, 2.2 mmol) was injected. After the mixture was stirred for 20 min, benzaldehyde (0.1 g, 1 mmol) was added dropwise via syringe, and the mixture was stirred for the corresponding reaction time under N2. The reaction was quenched by the addition of a sat. solution of NH4Cl (10 mL).The mixture was then extracted with Et2O (3 × 15 mL), the combined organic extracts were dried, concentrated in vacuo, and the crude products were purified by flash column chromatography (hexane-EtOAc). The ee values of the alcohol products were determined by HPLC on a Chiralcel OD-H column (i-PrOH-hexane) or by GC analysis on a chiral cyclodextrin capillary column. The absolute configuration of the major enantiomer was assigned by comparison of retention time of HPLC or GC with literature data. For literature related to HPLC or GC analysis, please see:
10a
Huang WS.
Hu QS.
Pu L.
J. Org. Chem.
1998,
63:
1364
10b
Bolm C.
Muñiz-Fernández K.
Seger A.
Raabe G.
Günther K.
J. Org. Chem.
1998,
63:
7860
10c
Nakamura Y.
Takeuchi S.
Okumura K.
Ohgo Y.
Tetrahedron
2001,
57:
5565