Fortschr Neurol Psychiatr 2007; 75(7): 402-412
DOI: 10.1055/s-2006-944317
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Die Bedeutung von Cholin und verschiedenen Serumparametern für den Verlauf der Anorexia nervosa

The Importance of Choline and Different Serum Parameters for the Course of the Anorexia NervosaL.  Wöckel1, 2 , T.  Bertsch3 , S.  Koch4 , L.  Achtnichts5 , M.  Holtmann1 , N.  Gretz6 , M. H.  Schmidt2 , F.  Poustka1
  • 1Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Universität Frankfurt am Main (Direktor: Prof. Dr. F. Poustka)
  • 2Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Universität Heidelberg, Mannheim (Direktor: Prof. Dr. Dr. M. H. Schmidt)
  • 3Institut für Klinische Chemie und Laboratoriumsmedizin, Klinikum Nürnberg (Chefarzt: PD Dr. T. Bertsch)
  • 4Abteilung Psychopharmakologie, Zentralinstitut für Seelische Gesundheit, Universität Heidelberg, Mannheim (Leiter der Abteilung: Prof. Dr. R. Spanagel)
  • 5Neurologische Klinik, Universitätsspital Basel, Schweiz (Direktor: Prof. Dr. A. J. Steck)
  • 6Zentrum für Medizinische Forschung, Fakultät für Klinische Medizin Mannheim der Universität Heidelberg, Mannheim (Direktor: Prof. Dr. N. Gretz)
Further Information

Publication History

Publication Date:
17 November 2006 (online)

Zusammenfassung

In einer Starvationsuntersuchung wurde im Tierexperiment die Mangelernährung entsprechend einer Anorexia nervosa simuliert. Ratten im Alter von 11 bis 13 Wochen erhielten eine hypokalorische Diät in einer Standardzusammensetzung oder eine hypokalorische cholinreduzierte Diät. Die Dauer der Gewichtsreduktion betrug 12 bis 20 Wochen, das Ausmaß der Gewichtsreduktion lag zwischen 30 % bis 40 % vom Ausgangsgewicht. Bei einem Teil der Tiere erfolgte anschließend eine Wiederauffütterung (6 bis 12 Wochen) mit Standardnahrung oder cholinangereichert ad libitum. Untersucht wurden Blutparameter und die Membranfluiditäten im ZNS. Unter Gewichtsreduktion fand sich eine signifikante Abnahme vom Gesamteiweiß und der Triglyzeride (Z = -3,53 bzw. -3,42; p < 0,001) und eine Zunahme der Fluidität (Z = -2,83; p < 0,01). Nach langandauernder Gewichtsreduktion und anschließender Wiederauffütterung lag eine katabole Stoffwechsellage mit einem signifikant erhöhten Harnstoff/Kreatinin-Quotienten vor. Die cholinangereicherte Wiederauffütterung führte zu einer Normalisierung der Blutparameter und der Membranfluidität im ZNS. Bei Cholinanreicherung stieg das Gesamteiweiß signifikant (Z = -2,03; p < 0,01). Außerdem fanden wir eine negative Korrelation zwischen dem Gesamteiweiß und dem Harnstoff/Kreatinin-Quotienten (rS = -0,47; p < 0,001; n = 64), möglicherweise infolge eines verringerten Proteinkatabolismus oder eines erhöhten Proteinanabolismus. Darüber hinaus korrelierten Gesamteiweiß und Kreatinin mit den Membranfluiditäten des ZNS (rS = 0,65 bzw. 0,58 mit p < 0,001), so dass diese Parameter als potenzielle Prädiktoren für die Zellfunktion im mangelernährten Gehirn und zur Verlaufsuntersuchung einer Anorexie diskutiert werden können. Wir stellen die Hypothese auf, dass Cholinanreicherung der Nahrung zur Stabilität zerebraler Membranen beiträgt und den Verlauf der Stoffwechselveränderungen bei Anorexia nervosa günstig beeinflusst.

Abstract

Malnutrition in anorexia nervosa was simulated in an animal starvation study. Female rats aged 11 to 13 weeks received a hypocaloric standard diet or a hypocaloric choline reduced diet. Weight reduction lasted for 12 to 20 weeks and was between 30 % to 40 % of initial weight. Several animals were refed after weight reduction up to 6 to 12 weeks with a standard or a choline enriched diet ad libitum. Serum parameters and membrane fluidity of the CNS were measured after weight reduction or after refeeding. Weight reduction leads to a significant decrease of serum protein, triglycerides (Z = -3,53 resp. -3,42; p < 0,001) and an increase of membrane fluidity in the CNS (Z = -2,83; p < 0,001). Long-term diet with marked weight reduction and following refeeding causes a catabole metabolic situation with significant increase of urea/creatinine-ratio. Choline enriched refeeding after diet results in normalization of serum parameters and membrane fluidity of the CNS. Choline enrichment leads to a significant increase of serum protein (Z = -2,03; p < 0,01). Besides we found a negative correlation between serum protein and urea/creatinine-ratio (rS = -0,47; p < 0,001; n = 64). This is possibly caused by a reduced protein catabolism or an increased protein anabolism. Furthermore membrane fluidity in the CNS correlates with serum protein (rS = 0,65; p < 0,001; n = 41) and with serum creatinine levels (rS = 0,58; p < 0,001; n = 42). We conclude that these serum parameters are potential predictors for cell function in the starved brain and consequently for the course of anorexia nervosa. We furthermore hypothesize that choline enriched nutrition after starvation improves the stabilization of cerebral membranes and the metabolic situation in anorexia nervosa.

Literatur

  • 1 Blusztajn J K. Choline, a vital amine.  Science. 1998;  281 794-795
  • 2 Zeisel S H, Blusztajn J K. Choline and human nutrition.  Annu Rev Nutr. 1994;  14 269-296
  • 3 Los D A. Murata N. Membrane fluidity and its roles in the perception of environmental signals.  Biochimica et Biophysica Acta. 2004;  1666 142-157
  • 4 Holman R T, Adams C E, Nelson R A, Grater S JE, Jaskiewicz J A, Johnson S B, Erdman J W. Patients with anorexia nervosa demonstrate deficiencies of selected essential fatty acids, compensatory changes in nonessential fatty acids and decreased fluidity of plasma lipids.  J Nutr. 1995;  125 901-907
  • 5 Lejoyeux M, Bouvard M P, Viret J, Daveloose D, Adès J, Dugas M. Modifications of erythrocyte membrane fluidity from patients with anorexia nervosa before and after refeeding.  Psychiatry Research. 1996;  59 255-258
  • 6 Gaggiotti G, Taus M, Spazzafumo L, Tesei M, La Rocca R, Mozzanti L. Modifications of functional and physico-chemical properties of rat ileal plasma membranes.  Biochemistry and Molecular Biology International. 1995;  35 851-854
  • 7 Albi E, Tomassoni M L, Viola-Magni M. Effect of lipid composition on rat liver nuclear membrane fluidity.  Cell Biochemistry and Function. 1997;  15 181-190
  • 8 Winocour P D, Bryszewska M, Watala C, Rand M L, Epand R M, Kinlough-Rathbone R L, Packham M A, Mustard F. Reduced membrane fluidity in platelets from diabetic patients.  Diabetes. 1990;  39 241-244
  • 9 Winocour P D, Watala C, Kinlough-Rathbone R L. Membrane fluidity is related to the extent of glycation of proteins, but not to alterations in the cholesterol to phospholipids molar ratio in isolated platelet membranes from diabetic and control subjects.  Thrombosis and Haemostasis. 1992;  67 567-571
  • 10 Hirsch M J, Growdon J H, Wurtman R J. Relations between dietary choline or lecithin intake serum levels, and various metabolic indices.  Metabolism. 1978;  27 953-960
  • 11 Zeisel S H. Dietary influences on neurotransmission.  Adv Pediatr. 1986;  33 23-48
  • 12 Blusztajn J K, Liscovitch M, Mauron C. et al . Phosphatidylcholine as a precursor of choline for acetylcholine synthesis.  J Neural Transm Suppl. 1987;  24 247-259
  • 13 Fischer L M, Scearce J A, Mar M-H, Patel J R, Blanchard R T, Macintosh B A, Busby M G, Zeisel S H. Ad libitum choline intake in healthy individuals meets or exceeds the proposed adequate intake level.  J Nutr. 2005;  135 826-829
  • 14 Institute of Medicine and National Academy of Sciences USA .Dietary Reference Intakes for Folate, Thiamin, Riboflavin, Niacin, Vitamin B12, Panthothenic Acid, Biotin, and Cholin. Washington DC, National Academy Press 1998
  • 15 Yates A A, Schlicker S A, Suitor C W. Dietary reference intake: the new basis for recommendations for calcium and related nutrients, B vitamins, and choline.  J Am Diet Assoc. 1998;  98 699-706
  • 16 Zeisel S H. Choline: Essential for Brain Development and Function. In: Advances in Pediatrics. Mosby Year Book Europe LTD. 1997 44: 263-295
  • 17 Lombardi B. Effects of choline deficiency on rat hepatocytes.  Fed Proc. 1971;  30 139-142
  • 18 Da Costa K-A, Cochary E F, Blusztajn J K, Garner S C, Zeisel S H. Accumulation of 1,2-sn-diradylglycerol with increased membrane-associated protein kinase C may be the mechanism for spontaneous hepatocarcinogenesis in choline deficient rats.  J Biol Chem. 1993;  268 2100-2105
  • 19 Michael U F, Cookson S L, Chavez R, Pardo V. Renal function in the choline deficient rat.  Proc Soc Exp Biol Med. 1975;  150 672-676
  • 20 Caniggia A. Effect of choline on hemopoiesis.  Haematologica. 1950;  34 625-627
  • 21 Chang C H, Jensen L S. Inefficacy of carnitine as a substitute for choline for normal reproduction in japanese quail.  Poult Sci. 1975;  54 1718-1720
  • 22 Blusztajn J K, Wurtman R. Choline and cholinergic neurons.  Science. 1983;  221 614-620
  • 23 Wurtman R J. Nutrients affecting brain composition and behavior.  Integr Psychiatry. 1987;  5 226-257
  • 24 Blusztajn J K, Holbrook P G, Lakher M, Liscovitch M, Maire J C, Mauron C, Richardson U I, Tacconi M, Wurtman R J. “Autocannibalism” of membrane choline-phospholipids: physiology and pathology.  Psychopharmacol Bull. 1986;  22 781-786
  • 25 Zeisel S H, Da Costa K-A, Franklin P D, Alexander E A, Lamont J T, Sheard N F, Beiser A. Choline, an essential nutrient for humans.  FASEB J. 1991;  5 2093-2098
  • 26 Schlemmer H-P, Möckel R, Marcus A, Hentschel F, Göpel C, Becker G, Köpke J, Gückel F, Schmidt M H, Georgi M. Proton magnetic resonance spectroscopy in acute, juvenile anorexia nervosa.  Psychiatry Research Neuroimaging. 1998;  82 171-179
  • 27 Möckel R, Schlemmer H-P, Gückel F, Göpel C, Becker G, Köpke J, Hentschel F, Schmidt M H, Georgi M. 1H-MR-Spektroskopie bei Anorexia nervosa: Reversible zerebrale Metabolitenveränderungen.  Fortschritte Röntgenstrahlen. 1999;  170 371-377
  • 28 Wöckel L, Schweinhardt P, Bertsch T, Kühl S, Koch S, Komorowski G v., Wiegand G, Schweer D, Fassbender K, Schmidt M H. The influence of cholesterol and phospholipid-content on membrane fluidity in the CNS of starved rats. New York: 9th International Conference of the AED Abstractband 2000: S: 46
  • 29 Da Costa K-A, Gaffney C E, Fischer L M, Zeisel S H. Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load.  Am J Clin Nutr. 2005;  81 440-444
  • 30 Frieling H, Römer K, Röschke B, Bönsch D, Wilhelm J, Fiszer R, de Zwaan M, Jacoby G E, Kornhuber J, Bleich S. Homocysteine plasma levels are elevated in females with anorexia nervosa.  J Neural Transm. 2005;  112 979-985
  • 31 Moyano D, Vilaseca M A, Artuch R, Valls C, Lambruschini N. Plasma total-homocysteine in anorexia nervosa.  Eur J Clin Nutr. 1998;  52 172-175
  • 32 Bleich S, Bandelow B, Javaheripour K, Müller A, Degner D, Wilhelm J, Havemann-Reinecke U, Sperling W, Rüther E, Kornhuber J. Hyperhomocysteinemia as a new risk factor for brain shrinkage in patients with alcoholism.  Neurosci Lett. 2003;  335 179-182
  • 33 Bleich S, Carl M, Bayerlein K, Reulbach U, Biermann T, Hillemacher T, Bönisch D, Kornhuber J. Evidence of elevated homocysteine levels in alcoholism. The Franconian Alcoholism Research Studies (FARS).  Alcohol Clin Exp Res. 2005;  29 334-336
  • 34 Bottiglieri T, Laundy M, Crellin R, Toone B K, Carney M W, Reynolds E H. Homocysteine, folate, methylation, and monoamine metabolism in depression.  J Neurol Neurosurg Psychiatry. 2000;  69 228-232
  • 35 Homocysteine Studies Collaboration . Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis.  JAMA. 2002;  288 2015-2022
  • 36 Seshadri S, Beiser A, Selhub J, Jacques P F, Rosenberg I H, D’Agostino R B, Wilson P W, Wolf P A. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease.  N Engl J Med. 2002;  346 476-483
  • 37 Olthof M R, Brink E J, Katan M B, Verhoef P. Choline supplemented as phosphatidylcholine decreases fasting and postmethionine-loading plasma homocysteine concentrations in healthy men.  Am J Clin Nutr. 2005;  82 111-117
  • 38 Olthof M R, Vliet T van, Verhoef P, Zock P L, Katan M B. Effect of homocystein-lowering nutrients on blood lipids: results from randomised placebo-controlled studies in healthy humans.  PloS Medicine. 2005;  2 446-456
  • 39 Aperia A, Broberger O, Fohlin L. Renal function in anorexia nervosa.  Acta Paediatr Scand. 1978;  67 219-224
  • 40 Beumont P V, Russell J D, Touyz S W. Treatment of anorexia nervosa.  The Lancet. 1993;  341 1635-1640
  • 41 Brotman A W, Rigotti N, Herzog D B. Medical complications of eating disorders: outpatient evaluation and management.  Comprehensive Psychiatry. 1985;  26 258-272
  • 42 Evrard F, Pinto da Cunha M, Lambert M, Devuyst O. Impaired osmoregulation in anorexia nervosa: a case-control study.  Nephrol Dial Transplant. 2004;  19 3034-3039
  • 43 Fichter M M, Pirke K M. Metabolic changes in anorexia nervosa and their diagnostic relevance.  Nervenarzt. 1982;  53 635-643
  • 44 Herpertz-Dahlmann B, Remschmidt H. Haematologic changes associated with weight loss in anorexia nervosa.  Monatsschrift Kinderheilkunde. 1988;  136 739-744
  • 45 Kennedy A, Kohn M, Lammi A, Clarke S. Iron status and haematological changes in adolescent female inpatients with anorexia nervosa.  J Paediatr Child Health. 2004;  40 430-432
  • 46 Lambert M, Hubert C, Depresseux G, Vande Berg B, Thissen J-P, Deuxchaisnes C N, Devogelaer J-P. Hematological changes in anorexia nervosa are correlated with total body fat mass depletion.  Int J Eat Disord. 1997;  21 329-334
  • 47 Miller K K, Grinspoon S K, Ciampa J, Hier J, Herzog D, Klibanski A. Medical findings in outpatients with anorexia nervosa.  Archives of Internal Medicine. 2005;  165 561-566
  • 48 Rock C L, Curran-Celentano J. Nutritional disorder of anorexia nervosa: a review.  Int J Eat Disord. 1994;  15 187-203
  • 49 Silverman J A. Anorexia nervosa. Clinical and metabolic observations.  Int J Eat Disord. 1983;  2 159-166
  • 50 Turner M SJ, Shapiro C M. The biochemistry of anorexia nervosa.  Int J Eat Disord. 1992;  12 179-193
  • 51 Warren M P, Vande Wiele R L. Clinical and metabolic features of anorexia nervosa.  American Journal of Obstetrics and Gynecology. 1973;  117 435-449
  • 52 Wöckel L, Bertsch T, Koch S, Gretz N, Poustka F, Schmidt M H. The influence of choline reduced and choline enriched diet on serum parameters and membrane fluidity in the CNS. 10th Annual Meeting of the EDRS, Amsterdam.  Abstractband. 2004;  10 165
  • 53 Wöckel L, Bertsch T, Koch S, Gretz N, Poustka F, Schmidt M H. Cholin - Ein mögliches Supplement in der Behandlung der Anorexie?. Heidelberg: 29. Kongress der DGKJP, Abstractband 2005: S: 250
  • 54 McCay C, Crowell M, Maynard L. The effect of retarded growth upon length of life and upon ulimate size.  J Nutr. 1935;  10 63-69
  • 55 Göpel C, Schmidt M H, Klein M. Are they starving their brains away? Cerebral changes in acute anorexia nervosa - approach by an animal model. 8th New York International Conference on Eating Disorders.  Abstractband. 1998;  8 24
  • 56 Thabrew M I. Liver microsomal membrane lipid composition in marasmic-kwashiorkor.  Life Sciences. 1983;  32 671-675
  • 57 Cazzola R, Rondanelli M, Russo-Volpe S, Ferrari E, Cestaro B. Decreased membrane fluidity and altered susceptibility to peroxidation and lipid composition in overweight and obese female erythrocytes.  J Lipid Res. 2004;  45 1846-1851
  • 58 Žák A, Vecka M, Tvrzická E, Hrubý M, Novák F, Papežová H, Lubanda H, Veselá L, Staňková B. Composition of plasma fatty acids and non-cholesterol sterols in anorexia nervosa.  Physiol Res. 2005;  54 443-451
  • 59 Da Costa K-A, Badea M, Fischer L M, Zeisel S H. Elevated serum creatine phosphokinase in choline-deficient humans: mechanistic studies in C2C12 mouse myoblasts.  Am J Clin Nutr. 2004;  80 163-170
  • 60 Wurtman R J, Hirsch M J, Growdon J. Lecithin consumption raises serum-free-choline levels.  Lancet. 1977;  2 68-69
  • 61 Wurtman R J, Regan M, Ulus I, Yu L. Effect of oral CDP-choline on plasma choline and uridine levels in humans.  Biochemical Pharmacology. 2000;  60 989-992
  • 62 López G, Coviella I, Agut J, Ortiz A, Wurtman R J. Effects of orally administered cytidine 5’-diphosphate choline on brain phospholipid content.  J Nutr Biochem. 1992;  3 313-315
  • 63 Buchman A L, Dubin M, Jenden D. et al . Lecithin increases plasma free choline and decreases hepatic steatosis in long-term TPN patients.  Gastroenterology. 1992;  102 1363-1370
  • 64 Sheard N F, Tyak J A, Bistrian B R. et al . Plasma choline concentrations in humans fed parenterally.  Am J Clin Nutr. 1986;  43 219-224
  • 65 Buchman A L, Dubin M, Moukarzel A A. et al . Choline deficiency: a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation.  Hepatology. 1995;  22 1399-1403
  • 66 Yao Z, Vance D E. Head group specifity in the requirement of phosphatidylcholine biosynthesis for very low density lipoprotein secretion from cultured hepatocytes.  J Biol Chem. 1989;  264 11 373-11 380
  • 67 Goshal A K, Ahluwalia M, Farber E. The rapid induction of liver cell death in rats fed a choline-deficiency methionine-low diet.  Am J Physiol. 1983;  113 309-314
  • 68 Di Pascoli L, Lion A, Milazzo D, Caregaro L. Acute liver damage in anorexia nervosa.  Int J Eat Disord. 2004;  36 114-117
  • 69 Yaryura-Tobias J A, Pinto A, Neziroglu F. Anorexia nervosa, diabetes mellitus, brain atrophy and fatty liver.  Int J Eat Disord. 2001;  30 350-353
  • 70 Furuta S, Ozawa Y, Maejima K, Tashiro H, Kitahora T, Hasegawa K, Kuroda S, Ikuta N. Anorexia nervosa with severe liver dysfunction and subsequent critical complications.  Internal Medicine. 1999;  38 575-579
  • 71 Buchman A L, Ament M E, Sohel M, Dubin M, Jenden D J, Roch M, Pownall H, Farley W, Awal M, Ahn C. Choline deficiency causes reversible hepatic abnormalities in patients receiving parenteral nutrition: proof of a human choline requirement: a placebo-controlled trial.  J of Parenteral and Enteral Nutrition. 2001;  25 260-268
  • 72 Dodson W L, Sachan D S. Choline supplementation reduces urinary carnitine excretion in humans.  Am J Clin Nutr. 1996;  63 904-910
  • 73 Case T, Lemieux S, Kennedy S H, Lewis G F. Elevated plasma lipids in patients with binge eating disorders are found only in those who are anorectic.  Int J Eat Disord. 1999;  25 187-193
  • 74 Mira M, Steward P M, Vizzard J, Abraham S. Biochemical abnormalities in anorexia nervosa and bulimia.  Annals of Clinical Biochemistry. 1987;  24 29-35
  • 75 Umeki S. Biochemical abnormalities of the serum in anorexia nervosa.  The Journal of Nervous and Mental Disease. 1988;  176 503-506
  • 76 Weinbrenner T, Züger M, Jacoby G E, Herpertz S, Liedtke R, Sudhop T, Gouni-Berthold I, Axelson M, Berthold H K. Lipoprotein metabolism in patients with anorexia nervosa: a case-control study investigating the mechanisms leading to hypercholesterolaemia.  British Journal of Nutrition. 2004;  91 959-969
  • 77 Marcus A, Blanz B, Lehmkuhl G, Rothenberger A, Eisert H-G. Somatische Befunde bei Kindern und Jugendlichen mit Anorexia nervosa.  Acta Paedopsychiatrica. 1989;  52 1-11
  • 78 Mickley D, Greenfeld D, Quinlan D M, Roloff P, Zwas F. Abnormal liver enzymes in outpatients with eating disorders.  Int J Eat Disord. 1996;  20 325-329
  • 79 Milner M R, McAnarney E R, Klish W J. Metabolic abnormalities in adolescent patients with anorexia nervosa.  Journal of Adolescent Health Care. 1985;  6 191-195
  • 80 Ozawa Y, Shimizu T, Shishiba Y. Elevation of serum aminotransferase as a sign of multiorgan-disorders in severely emaciated anorexia nervosa.  Internal Medicine. 1998;  37 32-39
  • 81 Rivera-Nieves J, Kozaiwa K, Rees Parrish C, Iezzoni J, Berg C L. Marked transaminase elevation in anorexia nervosa.  Digestive Diseases and Sciences. 2000;  45 1959-1963
  • 82 Nova E, Lopez-Vidriero I, Varela P, Toro O, Casas J, Marcos A. Indicators of nutritional status in restricting-type anorexia nervosa patients: 1-year follow-up study.  Clinical Nutrition. 2004;  23 1353-1359
  • 83 Feillet F, Feillet-Coudray C, Bard J-M, Parra H-J, Favre E, Kabuth B, Fruchart J-C, Vidailhet M. Plasma cholesterol and endogenous cholesterol synthesis during refeeding in anorexia nervosa.  Clinica Chimica Acta. 2000;  294 45-56
  • 84 Gower B A, Weinsier R L, Jordan J M, Hunter G R, Desmond R. Effects of weight loss on changes in insulin sensitivity and lipid concentrations in premenopausal African American and white women.  Am J Clin Nutr. 2002;  76 923-927
  • 85 Phinney S D, Tang A B, Waggoner C R, Tezanos-Pinto R G, Davis P A. The transient hypercholesterolemia of major weight loss.  Am J Clin Nutr. 1991;  53 1404-1410
  • 86 Lewis G F, Ralevski E, Neitzert C S, Uffelman K D, Steiner G, Kennedy S H. Lipids and lipoproteins in anorexia nervosa before and after partial weight restoration.  Endocrinology and Metabolism Clinics of North America. 1994;  1 109-115
  • 87 Halmi K A, Fry M. Serum lipids in anorexia nervosa.  Biological Psychiatry. 1974;  8 159-167
  • 88 Swenne I. The significance of routine laboratory analyses in the assessment of teenage girls with eating disorders and weight loss.  Eating and Weight Disorders. 2004;  9 269-278
  • 89 Halmi K A, Falk J R. Common physiological changes in anorexia nervosa.  Int J Eat Disord. 1981;  1 16-27
  • 90 Marinella M A. Refeeding syndrome.  Am J Phys Med Rehabil. 2004;  83 65-68
  • 91 Castro J, Deulofeu R, Gila A, Puig J, Toro J. Persistence of nutritional deficiences after short-term weight recovery in adolescents with anorexia nervosa.  The International Journal of Eating Disorders. 2004;  35 169-178
  • 92 Ogata E S, Foung S KH, Holliday M A. The effects of starvation and refeeding on muscle protein synthesis and catabolism in the young rat.  J Nutr. 1978;  108 759-765
  • 93 Herzog W, Deter H-C, Fiehn W, Petzold E. Medical findings and predictors of long-term physical outcome in anorexia nervosa: a prospective, 12-year follow-up study.  Psychological Medicine. 1997;  27 269-279
  • 94 Deter H-C, Schellberg D, Köpp W, Friedrich H C, Herzog W. Predictability of a favorable outcome in anorexia nervosa.  European Psychiatry. 2005;  20 165-172
  • 95 Zeisel S H, Mar M-H, Howe J C, Holden J M. Concentrations of choline-containing compounds and betaine in common foods.  J Nutr. 2003;  133 1302-1307

Dr. Lars Wöckel

Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters der Universitätsklinik Frankfurt/Main

Deutschordenstr. 50

60528 Frankfurt/Main

Email: woeckel@em.uni-frankfurt.de