References and Notes
1
Compain P.
Martin OR.
Bioorg. Med. Chem.
2001,
9:
3077
2a
Stütz AE.
Iminosugar as Glycosidase Inhibitors: Nojiromycin and Beyond
Wiley-VCH;
Weinheim:
1998.
2b
Chapleur Y.
Carbohydrate Mimics, Concepts and Methods
Wiley-VCH;
Weinheim:
1998.
3a
Drinnan NB.
Vari F.
Mini Rev. Med. Chem.
2003,
3:
633
3b
Fügedi P.
Mini Rev. Med. Chem.
2003,
3:
659
3c
Hurtley S.
Service R.
Szuromi P.
Science
2001,
291:
2337
3d
Sears P.
Wong CH.
Angew. Chem. Int. Ed.
1999,
38:
2300
4
Silva MT.
Tributino JL.
Miranda AL.
Barreiro EJ.
Fraga CA.
Eur. J. Med. Chem.
2002,
37:
163
5
Batra S.
Roy AK.
Patra A.
Bhaduri AP.
Surin WR.
Ragharan SAV.
Sharma P.
Kapoor K.
Dikshit M.
Bioorg. Med. Chem.
2003,
11:
2269
6
Patra A.
Batra S.
Bhaduri AP.
Khanna A.
Chander R.
Dikshit M.
Bioorg. Med. Chem.
2004,
12:
2059
7
Conti P.
Dallanoce C.
De Amici M.
De Micheli C.
Klotz K.-N.
Bioorg. Med. Chem. Lett.
1998,
6:
401
8
Shin KD.
Lee M.-Y.
Shin D.-S.
Lee S.
Son K.-H.
Paik Y.-K.
Kwon B.-M.
Han DC.
J. Biol. Chem.
2005,
280:
41439
9a
Zificsak CA.
Hlasta DJ.
Tetrahedron
2004,
60:
8991
9b
Fader LD.
Carreira EM.
Org. Lett.
2004,
6:
2485
9c
Bode JW.
Fraefel N.
Muri D.
Carreira EM.
Angew. Chem. Int. Ed.
2001,
40:
2082
10a
Gothelf KV.
Jorgensen AK.
Chem. Rev.
1998,
98:
863
10b
Carruthers W.
Cycloaddition Reaction in Organic Synthesis
Pergamon Press;
Oxford UK:
1990.
p.269
10c
Caramella P.
Grunanger P. In 1,3-Dipolar Cycloaddition Chemistry
Vol. 1:
Padwa A.
Wiley;
New York:
1984.
p.291
10d
Padwa A.
1,3-Dipolar Cycloaddition Chemistry
Wiley;
New York:
1984.
11a
Torsell KBG.
Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis
VCH;
Weinheim:
1988.
11b
Larsen KE.
Torsell KBG.
Tetrahedron
1984,
40:
2985
11c
Liu K.-C.
Shelton BR.
Howe RK.
J. Org. Chem.
1980,
45:
3916
12
Maugein N.
Wagner A.
Mioskowski C.
Tetrahedron Lett.
1997,
38:
1547
13
Mukaiyama T.
Hoshino T.
J. Am. Chem. Soc.
1960,
82:
5339
14a
DeShong P.
Kell DA.
Sidler DR.
J. Org. Chem.
1985,
50:
2309
14b
DeShong P.
Kell DA.
Tetrahedron Lett.
1986,
27:
3979
14c
Mendez F.
Tamariz J.
Geerlings P.
J. Phys. Chem.
1998,
102:
6292
15
Himo F.
Lovell T.
Hilgraf R.
Rostovsev VV.
Noodleman L.
Sharpless BK.
Folkin VV.
J. Am. Chem. Soc.
2005,
127:
210
16a
Ganguly N.
Sukai AK.
De S.
Synth. Commun.
2001,
31:
301
16b
Horiuchi CA.
Ochiai K.
Fukunishi H.
Chem. Lett.
1994,
185
17
Wade PA.
Amin NV.
Yen H.-K.
Price DT.
Huhn GF.
J. Org. Chem.
1984,
49:
4595
18
Moore JE.
Davies MW.
Goodenough KM.
Wybrow RAJ.
York M.
Johnson CN.
Harrity PA.
Tetrahedron
2005,
61:
6707
19a
Roy R.
Trono MC.
Giguère D. In Glycomimetics - Modern Synthetic Methodologies
Roy R.
ACS Symposium Series 896, American Chemical Society;
Washington DC:
2005.
p.137
19b
Baek M.-G.
Roy R.
Bioorg. Med. Chem.
2002,
10:
11
19c
Roy R.
Das KS.
Santoyo-Gonzalez F.
Hernandez-Mateo F.
Dam TK.
Brewer CF.
Chem. Eur. J.
2000,
6:
1757
19d
Roy R.
Das SK.
Dominique R.
Trono MC.
Hernandez-Mateo F.
Santoyo-Gonzalez F.
Pure Appl. Chem.
1999,
71:
565
20
Wamhoff H. In Comprehensive Heterocyclic Chemistry
Vol. 4:
Katritzky AR.
Rees CW.
Potts KT.
Pergamon Press;
Oxford:
1984.
p.669
21a
Liu L.
McKee M.
Postema MHD.
Curr. Org. Chem.
2005,
5:
1133
21b
Gallos JK.
Koumbis AE.
Curr. Org. Chem.
2003,
7:
397
21c
Kirsching A.
Jesberger M.
Schoning KU.
Synthesis
2001,
507
21d
Berecibar A.
Grandjean C.
Siriwardena A.
Chem. Rev.
1999,
99:
779
21e
Herczegh P.
Kovacs I.
Erdosi G.
Varga T.
Agocs A.
Szilagyi L.
Sztaricskai F.
Berecibar A.
Lukacs G.
Olesker A.
Pure Appl. Chem.
1997,
69:
519
21f
Ferrier RJ.
Chem. Rev.
1993,
93:
2779
22
Itoh K.-i.
Takahashi S.
Ueki T.
Sugiyama T.
Takahashi TT.
Horiuchi CA.
Tetrahedron Lett.
2002,
43:
7035
23
Itoh K.-i.
Horiushi CA.
Tetrahedron
2004,
60:
1671
24
Siguyama T.
Appl. Organomet. Chem.
1995,
9:
399
25
Nelson SD.
Kasparian DJ.
Trager WF.
J. Org. Chem.
1972,
37:
2686
26a
Mitchell EP.
Sabin C.
Snajdrova L.
Pokorna M.
Perret S.
Gautier C.
Hofr C.
Gilboa-Garber N.
Koca J.
Wimmerova M.
Imberty A.
Proteins: Struct. Funct. Bioinf.
2005,
58:
735
26b
Imberty A.
Wimmerova M.
Mitchell EP.
Gilboa-Garber N.
Microb. Infect.
2004,
6:
221
26c
Roussel P.
Lamblin G.
Adv. Exp. Med. Biol.
2003,
535:
17
26d
Mitchell EP.
Houles C.
Sudakevitz D.
Wimmerova M.
Gautier C.
Perez S.
Wu AM.
Gilboa-Garber N.
Imberty A.
Nat. Struct. Biol.
2002,
9:
918
27a
Giguère D.
Sato S.
St-Pierre C.
Sirois S.
Roy R.
Bioorg. Med. Chem. Lett.
2006,
16:
1668
27b
Ahmad N.
Gabius H.-J.
André S.
Kaltner H.
Sabesan S.
Roy R.
Liu B.
Macaluso F.
Brewer CF.
J. Biol. Chem.
2004,
279:
10841
27c
André S.
Liu B.
Gabius H.-J.
Roy R.
Org. Biomol. Chem.
2003,
1:
3909
28a
Hsu DK.
Liu FT.
Glycoconjugate J.
2004,
19:
507
28b
Hermandes JD.
Baum LG.
Glycobiolology
2002,
12:
127R
29a
Sato S.
Nieminem J.
Glycoconjugate J.
2004,
19:
441
29b
Liu FT.
Int. Arch. Allergy Immunol.
2005,
136:
385
30
Ouellet M.
Mercier S.
Pelletier I.
Bounou S.
Roy J.
Hirabayashi J.
Sato S.
Tremblay MJ.
J. Immunol.
2005,
174:
4120
31
Giguère D.
Patnam R.
Bellefleur M.-A.
St-Pierre C.
Sato S.
Roy R.
Chem. Commun.
2006,
2379
32a
Bouckaert J.
Berglund J.
Shembri M.
De Genst E.
Cools L.
Wuhrer M.
Hung C.-S.
Pinker J.
Slättegard R.
Zavialov A.
Choudhury D.
Langermann S.
Hultgren SJ.
Wyns L.
Klemm P.
Oscarson S.
Knight SD.
De Greve H.
Mol. Microbiol.
2005,
55:
441
32b
Hung C.-S.
Bouckaert J.
Pinker J.
Widberg C.
DeFusco A.
Auguste CG.
Strouse R.
Langermann S.
Waksman G.
Hultgren S.
Mol. Microbiol.
2002,
44:
903
32c
Schilling JD.
Mulvey MA.
Hultgren SJ.
J. Infect. Dis.
2001,
183:
S36
33
Nagahori N.
Lee RT.
Nishimura S.-I.
Pagé D.
Roy R.
Lee YC.
ChemBioChem
2002,
3:
836
34
Typical Procedure for Isoxazole Synthesis Using CAN(IV).Method A, Neat Solvent.
A mixture of acetylenic glycosides (0.5 mmol), ammonium cerium(IV) nitrate (0.5 mmol), and 4 Å MS in acetone (0.1 M) was stirred at reflux under nitrogen during 16-66 h (Table
[2]
). The mixture was poured into a solution of aq NaHCO3 (2.0 mL) and filtered over a Celite® pad. The filtrate was washed with brine (2 × 2.0 mL) and extracted with CH2Cl2. The organic layer was then washed with brine (2 × 2.0 mL), dried over Na2SO4, and concentrated under reduced pressure. Pure isoxazoles were isolated as clear oil by column chromatography using a mixture of EtOAc and hexane.
Method B, Ketones in MeCN.
A mixture of acetylenic glycosides (0.0695 g, 0.2 mmol), ammonium cerium(IV) nitrate (0.348 g, 0.6 mmol), the appropriate ketone (2.0 mmol), and 4 Å MS in MeCN (3.5 mL) was stirred at reflux under nitrogen during 16-66 h. The mixture was poored into a solution of aq NaHCO3 (2.0 mL) and filtered over a Celite® pad. The filtrate was washed with brine (2 × 2.0 mL) and extracted with CH2Cl2. The organic layer was then washed with brine (2 × 2.0 mL), dried over Na2SO4, and concentrated under reduced pressure. Pure isoxazoles were isolated as clear oil by column chromatography using a mixture of EtOAc and hexane.
All new compounds gave satisfactory analytical and spectral data. Data for selected compounds are as follows.
Compound 1a: oil. 1H NMR (300 MHz, CDCl3): δ = 6.63 (s, 1 H), 5.34 (dd, 1 H, J = 3.3, 10.2 Hz), 5.30 (dd, 1 H, J = 1.1, 3.3 Hz), 5.16 (d, 1 H, J = 3.9 Hz), 5.13 (dd, 1 H, J = 10.2, 3.9 Hz), 4.75 (dq, 2 H, J = 13.7, 0.6 Hz), 4.17 (dq, 1 H, J = 1.1, 6.6 Hz), 2.65 (s, 3 H), 2.16, 2.08, 1.98 (3 s, 3 × 3 H), 1.13 (d, 3 H, J = 6.6 Hz). 13C NMR (300 MHz, CDCl3): δ = 191.7 (1 C), 170.5 (1 C), 170.0 (1 C), 169.7 (1 C), 161.9 (1 C), 118.4 (1 C), 101.9 (1 C), 96.2 (1 C), 70.8 (1 C), 67.7 (1 C), 67.6 (1 C), 65.0 (1 C), 60.3, (1 C), 27.2 (1 C), 20.7 (1 C), 20.6 (2 C), 15.7 (1 C). MS (ESI): m/z calcd for C18H23NO10Na: 436.13; found: 436.3 [M + Na+].
Compound 1b: oil. 1H NMR (300 MHz, CDCl3): δ = 8.29 (m, 2 H), 7.65 (m, 1 H), 7.52 (m, 2 H), 6.80 (s, 1 H, H-9), 5.38 (dd, 1 H, J = 3.3, 10.7 Hz), 5.32 (dd, 1 H, J = 1.1, 3.3 Hz), 5.21 (d, 1 H, J = 3.9 Hz), 5.15 (dd, 1 H, J = 10.7, 3.9 Hz), 4.81 (dq, 2 H, J = 13.7, 0.6 Hz), 4.21 (dq, 1 H, J = 1.1, 6.6 Hz), 2.17, 2.09, 1.99 (3 s, 3 × 3 H), 1.15 (d, 3 H, J = 6.6 Hz). 13C NMR (300 MHz, CDCl3): δ = 185.6 (1 C), 170.7 (1 C), 170.6 (1 C), 170.2 (1 C), 169.1 (1 C), 135.7 (1 C), 134.4 (1 C), 130.9 (1 C), 130.3 (1 C), 104.6 (1 C), 96.6 (1 C), 71.1 (1 C), 68.0 (1 C), 67.9 (1 C), 65.3 (1 C), 60.6, (1 C), 21.0 (1 C), 20.9 (2 C), 16.0 (1 C). MS (ESI): m/z calcd for C23H25NO10Na: 498.15; found: 498.3 [M + Na+].
Compound 1c: oil. 1H NMR (300 MHz, CDCl3): δ = 6.59 (s, 1 H), 5.34 (dd, 1 H, J = 3.3, 10.4 Hz), 5.29 (dd, 1 H, J = 1.1, 3.3 Hz), 5.16 (d, 1 H, J = 3.6 Hz), 5.12 (dd, 1 H, J = 10.4, 3.6 Hz), 4.74 (dq, 2 H, J = 13.7, 0.6 Hz), 4.17 (dq, 1 H, J = 1.1, 6.6 Hz), 2.15, 2.07, 1.97 (3 s, 3 × 3 H), 1.37, (s, 3 × 3 H), 1.11 (d, 3 H, J = 6.6 Hz). 13C NMR (300 MHz, CDCl3): δ = 199.4 (1 C), 170.4 (1 C), 170.3 (1 C), 169.8 (1 C), 168.2 (1 C), 160.4 (1 C), 104.0 (1 C), 96.3 (1 C), 70.8 (1 C), 67.7 (1 C), 67.6 (1 C), 65.0 (1 C), 60.3 (1 C), 44.6 (1 C), 26.5 (3 C), 20.6 (1 C), 20.5 (1 C), 20.4 (1 C), 15.7 (1 C). MS (ESI): m/z calcd for C21H29NO10Na: 478.18; found: 478.3 [M + Na+].
Compound 3a (Table
[2]
, entry 4): oil. 1H NMR (300 MHz, CDCl3): δ = 6.46 (s, 1 H), 5.25 (m, 3 H), 4.92 (d, 1 H, J = 1.8 Hz), 4.79 (d, 1 H, J = 12.4 Hz), 4.72 (d, 1 H, J = 12.4 Hz), 4.24 (dd, 1 H, J = 12.3, 5.4 Hz), 4.02 (m, 2 H), 2.62 (s, 3 H), 2.12, 2.08, 2.01, 1.98 (4 s, 4 × 3 H). 13C NMR (300 MHz, CDCl3): δ = 191.5 (1 C), 170.5 (1 C), 169.8 (1 C), 169.7 (1 C), 169.6 (1 C), 168.9 (1 C), 161.9 (1 C), 102.3 (1 C), 97.3 (1 C), 69.1 (1 C), 69.0 (1 C), 68.6 (1 C), 65.7 (1 C), 62.2 (1 C), 59.7 (1 C), 27.2 (1 C), 20.7 (1 C), 20.6 (2 C), 20.5 (1 C). MS (ESI): m/z calcd for C20H25NO12: 471.14; found: 472.1 [M + H+].
Compound 3b (Table
[2]
, entry 5): oil. 1H NMR (300 MHz, CDCl3): δ = 8.28 (d, 2 H, J = 8.2 Hz), 7.62 (1 H, t, J = 8.2 Hz), 7.53 (2 H, t, J = 8.2 Hz), 6.62 (s, 1 H), 5.30 (m, 3 H), 4.98 (d, 1 H, J = 1.8 Hz), 4.83 (d, 1 H, J = 12.4 Hz), 4.78 (d, 1 H, J = 12.4 Hz), 4.27 (m, 1 H), 4.05 (m, 2 H), 2.17, 2.10, 2.02, 1.99 (4 s, 4 × 3 H). 13C NMR (300 MHz, CDCl3): δ = 185.2 (1 C), 170.5 (1 C), 169.8 (1 C), 169.7 (1 C), 169.6 (1 C), 168.1 (1 C), 162.1 (1 C), 134.1 (1 C), 130.6 (1 C), 128.5 (1 C), 104.7 (1 C), 97.4 (1 C), 69.2 (1 C), 69.0 (1 C), 68.8 (1 C), 65.9 (1 C), 62.2 (1 C), 59.7 (1 C), 20.7 (1 C), 20.6 (2 C), 20.5 (1 C). MS (ESI): m/z calcd for C25H27NO12: 533.1; found: 534.1 [M + H+].