References and Notes
1a
Larock RC.
Comprehensive Organic Transformations
VCH;
New York:
1989.
p.819
1b
Grundmann C. In
Houben-Weyl: Methoden der organischen Chemie
4th ed., Vol. E5:
Falbe J.
Thieme;
Stuttgart:
1985.
p.1313
For the nickel-catalyzed cyanation of aryl halides, see:
2a
Cassar L.
J. Organomet. Chem.
1973,
54:
57
2b
Cassar L.
Foà M.
Montanari F.
Marinelli GP.
J. Organomet. Chem.
1979,
173:
335
2c
Sakakibara Y.
Okuda F.
Shimoyabashi A.
Kirino K.
Sakai M.
Uchino N.
Takagi K.
Bull. Chem. Soc. Jpn.
1988,
61:
1985
2d
Sakakibara Y.
Ido Y.
Sasaki K.
Sakai M.
Uchino N.
Bull. Chem. Soc. Jpn.
1993,
66:
2776
2e Rock M.-H, and Merhold A. inventors; WO 98/37058.
For the palladium-catalyzed cyanation of aryl halides, see:
3a
Takagi K.
Okamoto T.
Sakakibara Y.
Oka S.
Chem. Lett.
1973,
471
3b
Sekiya A.
Ishikawa N.
Chem. Lett.
1975,
277
3c
Takagi K.
Okamoto T.
Sakakibara Y.
Ohno A.
Oka S.
Hayama N.
Bull. Chem. Soc. Jpn.
1975,
48:
3298
3d
Takagi K.
Okamoto T.
Sakakibara Y.
Ohno A.
Oka S.
Hayama N.
Bull. Chem. Soc. Jpn.
1976,
49:
3177
3e
Dalton JR.
Regen SL.
J. Org. Chem.
1979,
44:
4443
3f
Akita Y.
Shimazaki M.
Ohta A.
Synthesis
1981,
974
3g
Chatani N.
Hanafusa T.
J. Org. Chem.
1986,
51:
4714
3h
Takagi K.
Sasaki K.
Sakakibara Y.
Bull. Chem. Soc. Jpn.
1991,
64:
1118
3i
Anderson Y.
Långström B.
J. Chem. Soc., Perkin Trans. 1
1994,
1395
3j
Okano T.
Kiji J.
Toyooka Y.
Chem. Lett.
1998,
425
3k
Anderson BA.
Bell EC.
Ginah FO.
Harn NK.
Pagh LM.
Wepsiec JP.
J. Org. Chem.
1998,
63:
8224
3l
Maligres PE.
Waters MS.
Fleitz F.
Askin D.
Tetrahedron Lett.
1999,
40:
8193
3m
Jin F.
Confalone PN.
Tetrahedron Lett.
2000,
41:
3271
4
Sundermeier M.
Zapf A.
Beller M.
Eur. J. Inorg. Chem.
2003,
3513
5a
Okano M.
Amano M.
Takagi K.
Tetrahedron Lett.
1998,
39:
3001
5b
Ramnauth J.
Bhardwaj N.
Renton P.
Rhakit S.
Maddafird S.
Synlett
2003,
2237
5c
Tschaen DM.
Desmond R.
King AO.
Forin MC.
Pipik B.
King S.
Verhoeven TR.
Synth. Commun.
1994,
24:
887
5d
Marcantonio KM.
Frey LF.
Liu Y.
Chen Y.
Strine J.
Phenix B.
Wallace DJ.
Chen C.-Y.
Org. Lett.
2004,
6:
3723
5e
Maligres PE.
Waters MS.
Fleitz F.
Askin D.
Tetrahedron Lett.
1999,
40:
8193
5f
Jiang B.
Kan Y.
Zhang A.
Tetrahedron
2001,
57:
1581
6a
Chidambaram R.
Tetrahedron Lett.
2004,
45:
1441
6b
Jin F.
Confalone PN.
Tetrahedron Lett.
2000,
41:
3271
6c
Okano T.
Iwahara M.
Kiji J.
Synlett
1998,
243
6d
Stazi F.
Palmisano G.
Turconi M.
Santagostino M.
Tetrahedron Lett.
2005,
46:
1815
6e
Hatsuda M.
Seki M.
Tetrahedron Lett.
2005,
46:
1849
6f
Grossman O.
Gelman D.
Org. Lett.
2006,
8:
1189
7a
Okano T.
Kiji J.
Toyooka Y.
Chem. Lett.
1998,
425
7b
Cassar L.
Foa M.
J. Organomet. Chem.
1979,
173:
335
7c
Sundermeier M.
Zapf A.
Beller M.
Angew. Chem. Int. Ed.
2003,
42:
1661
7d
Sundermeier M.
Mutyala S.
Zapf A.
Spannenberg A.
Beller M.
J. Organomet. Chem.
2003,
684:
50
7e
Yang C.
Williams JM.
Org. Lett.
2004,
6:
2837
8a First use of potassium ferrocyanide in this capacity (uncatalyzed reaction): Merz V.
Weith W.
Ber. Dtsch. Chem. Ges.
1877,
10746
8b
Schareina T.
Zapf A.
Beller M.
Chem. Commun.
2004,
12:
1388
8c
Schareina T.
Zapt A.
Beller M.
J. Organomet. Chem.
2004,
689:
4576
8d
Schareina T.
Zapf A.
Beller M.
Tetrahedron Lett.
2005,
46:
2585
8e
Weissman SA.
Zewge D.
Chen C.
J. Org. Chem.
2005,
70:
1508
9a
Wasserscheid P.
Welton T.
Ionic Liquids in Synthesis
Wiley-VCH;
Weinheim:
2002.
9b
Liao MC.
Duan XH.
Liang YM.
Tetrahedron Lett.
2005,
46:
3469
10
Wu JX.
Beck B.
Ren RX.
Tetrahedron Lett.
2002,
43:
387
11a
Leadbeater NE.
Torenius HM.
Tye H.
Tetrahedron
2003,
59:
2253
11b
Cai L.
Liu X.
Tao X.
Shen D.
Synth. Commun.
2004,
34:
1215
11c
Srivastava RR.
Collibee SE.
Tetrahedron Lett.
2004,
45:
8895
11d
Arvela RK.
Leadbeater NE.
J. Org. Chem.
2003,
68:
9122
11e
Arvela RK.
Leadbeater NE.
Torenius HM.
Tye H.
Org. Biomol. Chem.
2003,
1:
1119
11f
Alterman M.
Hallberg A.
J. Org. Chem.
2000,
65:
7984
12 As the ionic liquid, [BMIm]BF4 was chosen because it was not only most easily manipulated at r.t., but one can be sure to be able to separate the product from the solvent completely via simple extraction with a conventional organic solvent and reused.
13 K4[Fe(CN)6]·3H2O is ground to a fine powder and dried under vacuum (ca. 2 mbar) at 80 °C overnight.
14 Microwave experiments were conducted using a CEM Discover Synthesis Unit (CEM Corp., Matthews, NC). The machine consists of a continuous focused microwave power delivery system with operator selectable power output from 0-300 W.
For recent examples, see:
15a
Ho T.-L.
Su C.-Y.
J. Org. Chem.
2000,
65:
3566
15b
Williams GM.
Roughley SD.
Davies JE.
Holmes AB.
J. Am. Chem. Soc.
1999,
121:
4900
15c
Carless HAJ.
Dove Y.
Tetrahedron: Asymmetry
1996,
7:
649
16a
Fleming FF.
Pu Y.
Tercek F.
J. Org. Chem.
1997,
62:
4883
16b
Fleming FF.
Hussain Z.
Weaver D.
Norman RE.
J. Org. Chem.
1997,
62:
1305
16c
Fleming FF.
Pak JJ.
J. Org. Chem.
1995,
60:
4299
17
General Procedure for the Cyanation of Aryl and Arylvinyl Bromides under Microwave Promotion.
[BMIm]BF4 (1.5 mL) was placed into a 10-mL glass microwave tube and to this was added anhyd K4[Fe(CN)6] (0.05 mmol), Na2CO3 (0.25 mmol), substrate (0.25 mmol), PdCl2 (2.5 mol%), and DMEDA (10 mol%). After sealing the tube, the mixture was exposed to microwave irradiation (a maximum microwave power of 120 W, a temperature threshold of 200 °C and a pressure threshold of 200 psi) for the requisite time. After the reaction mixture was cooled, the product was extracted from the system by washing the ionic liquid repeatedly with EtOAc-PE = 8:1 (4 × 3 mL). Finally, the product was isolated by flash chromatography on silica gel using EtOAc-PE as mobile phase.
18 Compound 2a: 1H NMR (300 MHz, CDCl3): δ = 7.72-7.65 (m, 4 H), 7.60-7.56 (m, 2 H), 7.51-7.41 (m, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 145.5, 139.0, 132.5, 129.0, 128.6, 127.6, 127.1, 118.9, 110.7 ppm. MS: m/z = 179 [M+], 151, 76.
Compound 2c: 1H NMR (300 MHz, CDCl3): δ = 7.81-7.78 (m, 4 H), 7.71 (d, J = 8.7 Hz, 4 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 143.4, 132.8, 127.9, 118.4, 112.3 ppm. MS: m/z = 204 [M+], 153, 126, 76.
Compound 4d: 1H NMR (300 MHz, CDCl3): δ = 8.22 (d, J = 16.5 Hz, 1 H), 8.03 (d, J = 8.1 Hz, 1 H), 7.95-7.87 (m, 2 H), 7.67-7.46 (m, 4 H), 5.96 (d, J = 16.5 Hz, 1 H) ppm.
13C NMR (75 MHz, CDCl3): δ = 147.8, 133.5, 131.5, 130.8, 130.6, 128.8, 127.3, 126.5, 125.3, 124.6, 122.7, 118.2, 98.7 ppm. MS: m/z = 179 [M+], 152, 76.