ABSTRACT
Mortality rates from acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) range from 30 to 65%. Although mechanical ventilation (MV) may delay mortality in critically ill patients with ALI/ARDS, it may also cause a lung injury that further promotes and perpetuates ALI/ARDS and multiorgan dysfunction syndrome (MODS). Recent studies have demonstrated that lung protective strategies of MV, as compared with the injurious strategy of conventional MV (CMV) can reduce absolute mortality rates during ALI/ARDS. The protective strategies limit tidal volumes and peak/plateau pressures while maximizing positive end-expiratory pressure. The injury to the lung by CMV is characterized histologically by edema, leukocyte extravasation, and endothelial and epithelial damage. Both human and animal studies suggest that alveolar cell deformation from CMV leads to the release of cytokines/chemokines which orchestrate the extravasation, activation, and recruitment of leukocytes, causing ventilator-associated lung injury (VALI) and ventilator-induced lung injury (VILI). Moreover, VALI/VILI can perpetuate the chronic inflammatory response during ALI/ARDS and MODS. This article explores the role of cytokines/chemokines during the pathogenesis of VALI/VILI.
KEYWORDS
Cytokines - chemokines - leukocytes - ventilator - lung
REFERENCES
-
1
Ware L B, Matthay M A.
The acute respiratory distress syndrome.
N Engl J Med.
2000;
342
1334-1349
-
2
Ranieri V M, Suter P M, Tortorella C et al..
Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial.
JAMA.
1999;
282
54-61
-
3
Kollef M H, Schuster D P.
The acute respiratory distress syndrome.
N Engl J Med.
1995;
332
27-37
-
4
Dreyfuss D, Soler P, Basset G, Saumon G.
High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure.
Am Rev Respir Dis.
1988;
137
1159-1164
-
5
Corbridge T C, Wood L D, Crawford G P, Chudoba M J, Yanos J, Sznajder J I.
Adverse effects of large tidal volume and low PEEP in canine acid aspiration.
Am Rev Respir Dis.
1990;
142
311-315
-
6
Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network.
N Engl J Med.
2000;
342
1301-1308
-
7
West J B, Mathieu-Costello O.
Stress failure of pulmonary capillaries: role in lung and heart disease.
Lancet.
1992;
340
762-767
-
8
Hudson L D.
Survival data in patients with acute and chronic lung disease requiring mechanical ventilation.
Am Rev Respir Dis.
1989;
140(2 Pt 2)
S19-S24
-
9
Gattinoni L, D'Andrea L, Pelosi P, Vitale G, Pesenti A, Fumagalli R.
Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome.
JAMA.
1993;
269
2122-2127
-
10
Gattinoni L, Pesenti A, Baglioni S, Vitale G, Rivolta M, Pelosi P.
Inflammatory pulmonary edema and positive end-expiratory pressure: correlations between imaging and physiologic studies.
J Thorac Imaging.
1988;
3
59-64
-
11
Gattinoni L, Presenti A, Torresin A et al..
Adult respiratory distress syndrome profiles by computed tomography.
J Thorac Imaging.
1986;
1
25-30
-
12
Bachofen H, Schurch S.
Alveolar surface forces and lung architecture.
Comp Biochem Physiol A Mol Integr Physiol.
2001;
129
183-193
-
13
West J B.
Invited review: pulmonary capillary stress failure.
J Appl Physiol.
2000;
89
2483-2489
discussion-2497
-
14
Martynowicz M A, Walters B J, Hubmayr R D.
Mechanisms of recruitment in oleic acid-injured lungs.
J Appl Physiol.
2001;
90
1744-1753
-
15
Martynowicz M A, Minor T A, Walters B J, Hubmayr R D.
Regional expansion of oleic acid-injured lungs.
Am J Respir Crit Care Med.
1999;
160
250-258
-
16
Wyszogrodski I, Kyei-Aboagye K, Taeusch Jr H W, Avery M E.
Surfactant inactivation by hyperventilation: conservation by end-expiratory pressure.
J Appl Physiol.
1975;
38
461-466
-
17
Mead J, Takishima T, Leith D.
Stress distribution in lungs: a model of pulmonary elasticity.
J Appl Physiol.
1970;
28
596-608
-
18
Webb H H, Tierney D F.
Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive end-expiratory pressure.
Am Rev Respir Dis.
1974;
110
556-565
-
19
Dreyfuss D, Saumon G.
Ventilator-induced lung injury: lessons from experimental studies.
Am J Respir Crit Care Med.
1998;
157
294-323
-
20
Gordon S.
Alternative activation of macrophages.
Nat Rev Immunol.
2003;
3
23-35
-
21
Zingoni A, Sornasse T, Cocks B G, Tanaka Y, Santoni A, Lanier L L.
NK cell regulation of T cell-mediated responses.
Mol Immunol.
2005;
42
451-454
-
22
Mosmann T R, Sad S.
The expanding universe of T-cell subsets: Th1, Th2 and more.
Immunol Today.
1996;
17
138-146
-
23
Mantovani A, Allavena P, Sica A.
Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression.
Eur J Cancer.
2004;
40
1660-1667
-
24
Mantovani A, Schioppa T, Biswas S K, Marchesi F, Allavena P, Sica A.
Tumor-associated macrophages and dendritic cells as prototypic type II polarized myeloid populations.
Tumori.
2003;
89
459-468
-
25
Zhai Y, Kupiec-Weglinski J W.
What is the role of regulatory T cells in transplantation tolerance?.
Curr Opin Immunol.
1999;
11
497-503
-
26
Mosmann T R, Cherwinski H, Bond M W, Giedlin M A, Coffman R L.
Two types of murine helper T cell clone, I: Definition according to profiles of lymphokine activities and secreted proteins.
J Immunol.
1986;
136
2348-2357
-
27
Tremblay L, Valenza F, Ribeiro S P, Li J, Slutsky A S.
Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model.
J Clin Invest.
1997;
99
944-952
-
28
Beutler B A.
The role of tumor necrosis factor in health and disease.
J Rheumatol.
1999;
26(Suppl 57)
16-21
-
29
Ostensen M E, Thiele D L, Lipsky P E.
Tumor necrosis factor-alpha enhances cytolytic activity of human natural killer cells.
J Immunol.
1987;
138
4185-4191
-
30
Frishman J I, Edwards III C K, Sonnenberg M G, Kohno T, Cohen A M, Dinarello C A.
Tumor necrosis factor (TNF)-alpha-induced interleukin-8 in human blood cultures discriminates neutralization by the p55 and p75 TNF soluble receptors.
J Infect Dis.
2000;
182
1722-1730
-
31
Moreland L W, McCabe D P, Caldwell J R et al..
Phase I/II trial of recombinant methionyl human tumor necrosis factor binding protein PEGylated dimer in patients with active refractory rheumatoid arthritis.
J Rheumatol.
2000;
27
601-609
-
32
Schottelius A J, Moldawer L L, Dinarello C A, Asadullah K, Sterry W, Edwards III C K.
Biology of tumor necrosis factor-alpha: implications for psoriasis.
Exp Dermatol.
2004;
13
193-222
-
33
Piguet P F, Collart M A, Grau G E, Kapanci Y, Vassalli P.
Tumor necrosis factor/cachectin plays a key role in bleomycin-induced pneumopathy and fibrosis.
J Exp Med.
1989;
170
655-663
-
34
Suter P M, Suter S, Girardin E, Roux-Lombard P, Grau G E, Dayer J M.
High bronchoalveolar levels of tumor necrosis factor and its inhibitors, interleukin-1, interferon, and elastase, in patients with adult respiratory distress syndrome after trauma, shock, or sepsis.
Am Rev Respir Dis.
1992;
145
1016-1022
-
35
Park W Y, Goodman R B, Steinberg K P et al..
Cytokine balance in the lungs of patients with acute respiratory distress syndrome.
Am J Respir Crit Care Med.
2001;
164(10 Pt 1)
1896-1903
-
36
Hyers T M, Tricomi S M, Dettenmeier P A, Fowler A A.
Tumor necrosis factor levels in serum and bronchoalveolar lavage fluid of patients with the adult respiratory distress syndrome.
Am Rev Respir Dis.
1991;
144
268-271
-
37
Millar A B, Foley N M, Singer M, Johnson N M, Meager A, Rook G A.
Tumour necrosis factor in bronchopulmonary secretions of patients with adult respiratory distress syndrome.
Lancet.
1989;
2
712-714
-
38
Agouridakis P, Kyriakou D, Alexandrakis M G et al..
The predictive role of serum and bronchoalveolar lavage cytokines and adhesion molecules for acute respiratory distress syndrome development and outcome.
Respir Res.
2002;
3
25
-
39
Broccard A F, Hotchkiss J R, Vannay C et al..
Protective effects of hypercapnic acidosis on ventilator-induced lung injury.
Am J Respir Crit Care Med.
2001;
164
802-806
-
40
Broccard A F, Liaudet L, Aubert J D, Schnyder P, Schaller M D.
Negative pressure post-tracheal extubation alveolar hemorrhage.
Anesth Analg.
2001;
92
273-275
-
41
Montgomery A B, Stager M A, Carrico C J, Hudson L D.
Causes of mortality in patients with the adult respiratory distress syndrome.
Am Rev Respir Dis.
1985;
132
485-489
-
42
von Luettichau I, Nelson P J, Pattison J M et al..
RANTES chemokine expression in diseased and normal human tissues.
Cytokine.
1996;
8
89-98
-
43
Laffey J G, Engelberts D, Kavanagh B P.
Buffering hypercapnic acidosis worsens acute lung injury.
Am J Respir Crit Care Med.
2000;
161
141-146
-
44
Laffey J G, Tanaka M, Engelberts D et al..
Therapeutic hypercapnia reduces pulmonary and systemic injury following in vivo lung reperfusion.
Am J Respir Crit Care Med.
2000;
162
2287-2294
-
45
Takata M, Abe J, Tanaka H et al..
Intraalveolar expression of tumor necrosis factor-alpha gene during conventional and high-frequency ventilation.
Am J Respir Crit Care Med.
1997;
156
272-279
-
46
Chu E K, Whitehead T, Slutsky A S.
Effects of cyclic opening and closing at low- and high-volume ventilation on bronchoalveolar lavage cytokines.
Crit Care Med.
2004;
32
168-174
-
47
Ricard J D, Dreyfuss D, Saumon G.
Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal.
Am J Respir Crit Care Med.
2001;
163
1176-1180
-
48
de Perrot M, Liu M, Waddell T K, Keshavjee S.
Ischemia-reperfusion-induced lung injury.
Am J Respir Crit Care Med.
2003;
167
490-511
-
49
DeMeester S R, Rolfe M W, Kunkel S L et al..
The bimodal expression of tumor necrosis factor-alpha in association with rat lung reimplantation and allograft rejection.
J Immunol.
1993;
150
2494-2505
-
50
Johanson Jr W G, Higuchi J H, Woods D E, Gomez P, Coalson J J.
Dissemination of Pseudomonas aeruginosa during lung infection in hamsters: role of oxygen-induced lung injury.
Am Rev Respir Dis.
1985;
132
358-361
-
51
Slutsky A S, Tremblay L N.
Multiple system organ failure: is mechanical ventilation a contributing factor?.
Am J Respir Crit Care Med.
1998;
157(6 Pt 1)
1721-1725
-
52
Nahum A, Hoyt J, Schmitz L, Moody J, Shapiro R, Marini J J.
Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs.
Crit Care Med.
1997;
25
1733-1743
-
53
Tschumperlin D J, Oswari J, Margulies A S.
Deformation-induced injury of alveolar epithelial cells: effect of frequency, duration, and amplitude.
Am J Respir Crit Care Med.
2000;
162(2 Pt 1)
357-362
-
54
von Bethmann A N, Brasch F, Nusing R et al..
Hyperventilation induces release of cytokines from perfused mouse lung.
Am J Respir Crit Care Med.
1998;
157
263-272
-
55
Murphy D B, Cregg N, Tremblay L et al..
Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin.
Am J Respir Crit Care Med.
2000;
162
27-33
-
56
Imai Y, Kawano T, Iwamoto S, Nakagawa S, Takata M, Miyasaka K.
Intratracheal anti-tumor necrosis factor-alpha antibody attenuates ventilator-induced lung injury in rabbits.
J Appl Physiol.
1999;
87
510-515
-
57
Dinarello C A.
Interleukin-1.
Cytokine Growth Factor Rev.
1997;
8
253-265
-
58
Goodman R B, Pugin J, Lee J S, Matthay M A.
Cytokine-mediated inflammation in acute lung injury.
Cytokine Growth Factor Rev.
2003;
14
523-535
-
59
Burger D, Chicheportiche R, Giri J G, Dayer J M.
The inhibitory activity of human interleukin-1 receptor antagonist is enhanced by type II interleukin-1 soluble receptor and hindered by type I interleukin-1 soluble receptor.
J Clin Invest.
1995;
96
38-41
-
60
Jensen L E, Muzio M, Mantovani A, Whitehead A S.
IL-1 signaling cascade in liver cells and the involvement of a soluble form of the IL-1 receptor accessory protein.
J Immunol.
2000;
164
5277-5286
-
61
Dinarello C A.
Biologic basis for interleukin-1 in disease.
Blood.
1996;
87
2095-2147
-
62
Arend W P, Welgus H G, Thompson R C, Eisenberg S P.
Biological properties of recombinant human monocyte-derived interleukin 1 receptor antagonist.
J Clin Invest.
1990;
85
1694-1697
-
63
Kolb M, Margetts P J, Anthony D C, Pitossi F, Gauldie J.
Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis.
J Clin Invest.
2001;
107
1529-1536
-
64
Kadota J, Matsubara Y, Ishimatsu Y et al..
Significance of IL-1beta and IL-1 receptor antagonist (IL-1Ra) in bronchoalveolar lavage fluid (BALF) in patients with diffuse panbronchiolitis (DPB).
Clin Exp Immunol.
1996;
103
461-466
-
65
Smith D R, Kunkel S L, Standiford T J et al..
Increased interleukin-1 receptor antagonist in idiopathic pulmonary fibrosis: a compartmental analysis.
Am J Respir Crit Care Med.
1995;
151
1965-1973
-
66
Rolfe M W, Standiford T J, Kunkel S L et al..
Interleukin-1 receptor antagonist expression in sarcoidosis.
Am Rev Respir Dis.
1993;
148
1378-1384
-
67
Firestein G S, Berger A E, Tracey D E et al..
IL-1 receptor antagonist protein production and gene expression in rheumatoid arthritis and osteoarthritis synovium.
J Immunol.
1992;
149
1054-1062
-
68
Wilkinson R J, Patel P, Llewelyn M et al..
Influence of polymorphism in the genes for the interleukin (IL)-1 receptor antagonist and IL-1beta on tuberculosis.
J Exp Med.
1999;
189
1863-1874
-
69
Belperio J A, DiGiovine B, Keane M P et al..
Interleukin-1 receptor antagonist as a biomarker for bronchiolitis obliterans syndrome in lung transplant recipients.
Transplantation.
2002;
73
591-599
-
70
Dayer J M, de Rochemonteix B, Burrus B, Demczuk S, Dinarello C A.
Human recombinant interleukin 1 stimulates collagenase and prostaglandin E2 production by human synovial cells.
J Clin Invest.
1986;
77
645-648
-
71
Wilborn J, Crofford L J, Burdick M D, Kunkel S L, Strieter R M, Peters-Golden M.
Cultured lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis have a diminished capacity to synthesize prostaglandin E2 and to express cyclooxygenase-2.
J Clin Invest.
1995;
95
1861-1868
-
72
Naruse K, Shimizu K, Muramatsu M et al..
Long-term inhibition of NO synthesis promotes atherosclerosis in the hypercholesterolemic rabbit thoracic aorta. PGH2 does not contribute to impaired endothelium-dependent relaxation [see comments].
Arterioscler Thromb.
1994;
14
746-752
-
73
Kallio E A, Koskinen P K, Aavik E, Vaali K, Lemstom K B.
Role of nitric oxide in experimental obliterative bronchiolitis (chronic rejection) in the rat.
J Clin Invest.
1997;
100
2984-2994
-
74
Siler T M, Swierkosz J E, Hyers T M, Fowler A A, Webster R O.
Immunoreactive interleukin-1 in bronchoalveolar lavage fluid of high-risk patients and patients with the adult respiratory distress syndrome.
Exp Lung Res.
1989;
15
881-894
-
75
Goodman R B, Strieter R M, Martin D P et al..
Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome.
Am J Respir Crit Care Med.
1996;
154(3 Pt 1)
602-611
-
76
Donnelly S C, Strieter R M, Reid P T et al..
The association between mortality rates and decreased concentrations of interleukin-10 and interleukin-1 receptor antagonist in the lung fluids of patients with the adult respiratory distress syndrome.
Ann Intern Med.
1996;
125
191-196
-
77
Goodman R B, Strieter R M, Martin D P et al..
Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome.
Am J Respir Crit Care Med.
1996;
154(3 Pt 1)
602-611
-
78
Copland I B, Kavanagh B P, Engelberts D, McKerlie C, Belik J, Post M.
Early changes in lung gene expression due to high tidal volume.
Am J Respir Crit Care Med.
2003;
168
1051-1059
-
79
Ribeiro S P, Rhee K, Tremblay L, Veldhuizen R, Lewis J F, Slutsky A S.
Heat stress attenuates ventilator-induced lung dysfunction in an ex vivo rat lung model.
Am J Respir Crit Care Med.
2001;
163
1451-1456
-
80
Narimanbekov I O, Rozycki H J.
Effect of IL-1 blockade on inflammatory manifestations of acute ventilator-induced lung injury in a rabbit model.
Exp Lung Res.
1995;
21
239-254
-
81
Bhatia M, Moochhala S.
Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome.
J Pathol.
2004;
202
145-156
-
82
Kishimoto T.
Interleukin-6 and its receptor in autoimmunity.
J Autoimmun.
1992;
Apr(5 Suppl A)
123-132
-
83
Rose-John S.
Interleukin-6 biology is coordinated by membrane bound and soluble receptors.
Acta Biochim Pol.
2003;
50
603-611
-
84
Aasland D, Oppmann B, Grotzinger J, Rose-John S, Kallen K J.
The upper cytokine-binding module and the Ig-like domain of the leukaemia inhibitory factor (LIF) receptor are sufficient for a functional LIF receptor complex.
J Mol Biol.
2002;
315
637-646
-
85
Brunello A G, Weissenberger J, Kappeler A et al..
Astrocytic alterations in interleukin-6/soluble interleukin-6 receptor alpha double-transgenic mice.
Am J Pathol.
2000;
157
1485-1493
-
86
Burger R, Neipel F, Fleckenstein B et al..
Human herpesvirus type 8 interleukin-6 homologue is functionally active on human myeloma cells.
Blood.
1998;
91
1858-1863
-
87
Chow D, He X, Snow A L, Rose-John S, Garcia K C.
Structure of an extracellular gp130 cytokine receptor signaling complex.
Science.
2001;
291
2150-2155
-
88
Taga T, Kishimoto T.
Gp130 and the interleukin-6 family of cytokines.
Annu Rev Immunol.
1997;
15
797-819
-
89
Taga T, Hibi M, Hirata Y et al..
Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130.
Cell.
1989;
58
573-581
-
90
Mullberg J, Althoff K, Jostock T, Rose-John S.
The importance of shedding of membrane proteins for cytokine biology.
Eur Cytokine Netw.
2000;
11
27-38
-
91
Peters M, Muller A M, Rose-John S.
Interleukin-6 and soluble interleukin-6 receptor: direct stimulation of gp130 and hematopoiesis.
Blood.
1998;
92
3495-3504
-
92
Rose-John S, Heinrich P C.
Soluble receptors for cytokines and growth factors: generation and biological function.
Biochem J.
1994;
300(Pt 2)
281-290
-
93
Jones S A, Rose-John S.
The role of soluble receptors in cytokine biology: the agonistic properties of the sIL-6R/IL-6 complex.
Biochim Biophys Acta.
2002;
1592
251-263
-
94
Rose-John S.
GP130 stimulation and the maintenance of stem cells.
Trends Biotechnol.
2002;
20
417-419
-
95
Leser H G, Gross V, Scheibenbogen C et al..
Elevation of serum interleukin-6 concentration precedes acute-phase response and reflects severity in acute pancreatitis.
Gastroenterology.
1991;
101
782-785
-
96
Remick D G, Bolgos G R, Siddiqui J, Shin J, Nemzek J A.
Six at six: interleukin-6 measured 6 h after the initiation of sepsis predicts mortality over 3 days.
Shock.
2002;
17
463-467
-
97
Steinberg J M, Schiller H J, Halter J M et al..
Alveolar instability causes early ventilator-induced lung injury independent of neutrophils.
Am J Respir Crit Care Med.
2004;
169
57-63
-
98
Rich P B, Douillet C D, Hurd H, Boucher R C.
Effect of ventilatory rate on airway cytokine levels and lung injury.
J Surg Res.
2003;
113
139-145
-
99
Farrar M A, Schreiber R D.
The molecular cell biology of interferon-gamma and its receptor.
Annu Rev Immunol.
1993;
11
571-611
-
100
Thierfelder W E, van Deursen J M, Yamamoto K et al..
Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells.
Nature.
1996;
382
171-174
-
101
Fiorentino D F, Zlotnik A, Mosmann T R, Howard M.
A OG: IL-10 inhibits cytokine production by activated macrophages.
J Immunol.
1991;
147
3815-3822
-
102
Segel M J, Izbicki G, Cohen P Y et al..
Role of interferon-gamma in the evolution of murine bleomycin lung fibrosis.
Am J Physiol Lung Cell Mol Physiol.
2003;
285
L1255-L1262
-
103
Wallace W A, Ramage E A, Lamb D, Howie S E.
A type 2 (Th2-like) pattern of immune response predominates in the pulmonary interstitium of patients with cryptogenic fibrosing alveolitis (CFA).
Clin Exp Immunol.
1995;
101
436-441
-
104
Varga J, Olsen A, Herhal J, Constantine G, Rosenbloom J, Jimenez S A.
Interferon-gamma reverses the stimulation of collagen but not fibronectin gene expression by transforming growth factor-beta in normal human fibroblasts.
Eur J Clin Invest.
1990;
20
487-493
-
105
Stephenson M L, Krane S M, Amento E P, McCroskery P A, Byrne M.
Immune interferon inhibits collagen synthesis by rheumatoid synovial cells associated with decreased levels of the procollagen mRNAs.
FEBS Lett.
1985;
180
43-50
-
106
Guyre P M, Morganelli P M, Miller R.
Recombinant immune interferon increases immunoglobulin G Fc receptors on cultured human mononuclear phagocytes.
J Clin Invest.
1983;
72
393-397
-
107
Spoelstra F M, Postma D S, Hovenga H, Noordhoek J A, Kauffman H F.
Interferon-gamma and interleukin-4 differentially regulate ICAM-1 and VCAM-1 expression on human lung fibroblasts.
Eur Respir J.
1999;
14
759-766
-
108
Skoskiewicz M J, Colvin R B, Schneeberger E E, Russell P S.
Widespread and selective induction of major histocompatibility complex-determined antigens in vivo by gamma interferon.
J Exp Med.
1985;
162
1645-1664
-
109
Hobart M, Ramassar V, Goes N, Urmson J, Halloran P F.
The induction of class I and II major histocompatibility complex by allogeneic stimulation is dependent on the transcription factor interferon regulatory factor 1 (IRF-1): observations in IRF-1 knockout mice.
Transplantation.
1996;
62
1895-1901
-
110
Hobart M, Ramassar V, Goes N, Urmson J, Halloran P F.
IFN regulatory factor-1 plays a central role in the regulation of the expression of class I and II MHC genes in vivo.
J Immunol.
1997;
158
4260-4269
-
111
Hassan A T, Dai Z, Konieczny B T et al..
Regulation of alloantigen-mediated T-cell proliferation by endogenous interferon-gamma: implications for long-term allograft acceptance.
Transplantation.
1999;
68
124-129
-
112
Hidalgo L G, Halloran P F.
Role of IFN-gamma in allograft rejection.
Crit Rev Immunol.
2002;
22
317-349
-
113
Giri S N, Hyde D M, Marafino Jr B J.
Ameliorating effect of murine interferon gamma on bleomycin-induced lung collagen fibrosis in mice.
Biochem Med Metab Biol.
1986;
36
194-197
-
114
Keane M P, Belperio J A, Burdick M D, Strieter R M.
IL-12 attenuates bleomycin-induced pulmonary fibrosis.
Am J Physiol Lung Cell Mol Physiol.
2001;
281
L92-L97
-
115
Raghu G, Brown K K, Bradford W Z et al..
A placebo-controlled trial of interferon gamma-1b in patients with idiopathic pulmonary fibrosis.
N Engl J Med.
2004;
350
125-133
-
116
Belperio J A, DiGiovine B, Keane M P et al..
Interleukin-1 receptor antagonist as a biomarker for bronchiolitis obliterans syndrome in lung transplant recipients.
Transplantation.
2002;
73
591-599
-
117
de Waal Malefyt R, Abrams J, Bennett B, Figdor C G, de Vries J E.
Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes.
J Exp Med.
1991;
174
1209-1220
-
118
de Waal Malefyt R, Haanen J, Spits H et al..
Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression.
J Exp Med.
1991;
174
915-924
-
119
de Waal Malefyt R, Yssel H, Roncarolo M G, Spits H, de Vries J E.
Interleukin-10.
Curr Opin Immunol.
1992;
4
314-320
-
120
de Waal Malefyt R, Yssel H, de Vries J E.
Direct effects of IL-10 on subsets of human CD4 + T cell clones and resting T cells. Specific inhibition of IL-2 production and proliferation.
J Immunol.
1993;
150
4754-4765
-
121
te Velde A A, de Waal Malefijt R, Huijbens R J, de Vries J E, Figdor C G.
IL-10 stimulates monocyte Fc gamma R surface expression and cytotoxic activity: distinct regulation of antibody-dependent cellular cytotoxicity by IFN-gamma, IL-4, and IL-10.
J Immunol.
1992;
149
4048-4052
-
122
Fiorentino D F, Zlotnik A, Vieira P et al..
IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells.
J Immunol.
1991;
146
3444-3451
-
123
Bogdan C, Vodovotz Y, Nathan C.
Macrophage deactivation by interleukin 10.
J Exp Med.
1991;
174
1549-1555
-
124
Ralph P, Nakoinz I, Sampson-Johannes A et al..
IL-10, T lymphocyte inhibitor of human blood cell production of IL-1 and tumor necrosis factor.
J Immunol.
1992;
148
808-814
-
125
Hsu D H, de Waal Malefyt R, Fiorentino D F et al..
Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1.
Science.
1990;
250
830-832
-
126
Hsu D H, Moore K W, Spits H.
Differential effects of IL-4 and IL-10 on IL-2-induced IFN-gamma synthesis and lymphokine-activated killer activity.
Int Immunol.
1992;
4
563-569
-
127
Chen W F, Zlotnik A.
IL-10: a novel cytotoxic T cell differentiation factor.
J Immunol.
1991;
147
528-534
-
128
MacNeil I A, Suda T, Moore K W, Mosmann T R, Zlotnik A.
IL-10, a novel growth cofactor for mature and immature T cells.
J Immunol.
1990;
145
4167-4173
-
129
Hu S, Chao C C, Ehrlich L C et al..
Inhibition of microglial cell RANTES production by IL-10 and TGF-beta.
J Leukoc Biol.
1999;
65
815-821
-
130
Bejarano M T, de Waal Malefyt R, Abrams J S et al..
Interleukin 10 inhibits allogeneic proliferative and cytotoxic T cell responses generated in primary mixed lymphocyte cultures.
Int Immunol.
1992;
4
1389-1397
-
131
Inoue G.
Effect of interleukin-10 (IL-10) on experimental LPS-induced acute lung injury.
J Infect Chemother.
2000;
6
51-60
-
132
Kusske A M, Rongione A J, Ashley S W, McFadden D W, Reber H A.
Interleukin-10 prevents death in lethal necrotizing pancreatitis in mice.
Surgery.
1996;
120
284-288
discussion-289
-
133
Howard M, Muchamuel T, Andrade S, Menon S.
Interleukin 10 protects mice from lethal endotoxemia.
J Exp Med.
1993;
177
1205-1208
-
134
Penttinen R P, Kobayashi S, Bornstein P.
Transforming growth factor beta increases mRNA for matrix proteins both in the presence and in the absence of changes in mRNA stability.
Proc Natl Acad Sci USA.
1988;
85
1105-1108
-
135
Roberts A B, Sporn M B, Assoian R K et al..
Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro.
Proc Natl Acad Sci USA.
1986;
83
4167-4171
-
136
Shull M M, Ormsby I, Kier A B et al..
Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease.
Nature.
1992;
359
693-699
-
137
Harguindey S.
Combined strategy of cancerous cells: fat and protein metabolism: conclusions (3rd of 3 parts).
Med Interna.
1994;
11
351-358
-
138
Pittet J F, Griffiths M J, Geiser T et al..
TGF-beta is a critical mediator of acute lung injury.
J Clin Invest.
2001;
107
1537-1544
-
139
Sime P J, Xing Z, Graham F L, Csaky K G, Gauldie J.
Adenovector-mediated gene transfer of active transforming growth factor-beta 1 induces prolonged severe fibrosis in rat lung.
J Clin Invest.
1997;
100
768-776
-
140
Imanaka H, Shimaoka M, Matsuura N, Nishimura M, Ohta N, Kiyono H.
Ventilator-induced lung injury is associated with neutrophil infiltration, macrophage activation, and TGF-beta 1 mRNA upregulation in rat lungs.
Anesth Analg.
2001;
92
428-436
-
141
Yamamoto H, Teramoto H, Uetani K, Igawa K, Shimizu E.
Cyclic stretch upregulates interleukin-8 and transforming growth factor-beta1 production through a protein kinase C-dependent pathway in alveolar epithelial cells.
Respirology.
2002;
7
103-109
-
142
Rollins B J.
Chemokines.
Blood.
1997;
90
909-928
-
143
Luster A D.
Review articles: mechanisms of disease: chemokines-chemotactic cytokines that mediate inflammation.
N Engl J Med.
1998;
338
436-445
-
144 Strieter R M, Kunkel S L. Chemokines and the lung. In: Crystal R, West J, Weibel E, et al Lung: Scientific Foundations. 2nd ed. NY: Raven; 1997: 155-186
-
145
Bleul C C, Fuhlbrigge R C, Casasnovas J M, Aiuti A, Springer T A.
A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). [see comments].
J Exp Med.
1996;
184
1101-1109
-
146
Loetscher M, Gerber B, Loetscher P et al..
Chemokine receptor specific for IP10 and MIG: structure, function, and expression in activated T-lymphocytes [see comments].
J Exp Med.
1996;
184
963-969
-
147
Keane M P, Belperio J A, Arenberg D A et al..
IFN-gamma-inducible protein-10 attenuates bleomycin-induced pulmonary fibrosis via inhibition of angiogenesis.
J Immunol.
1999;
162(9)
5511-5518
-
148
Keane M P, Belperio J A, Moore T A et al..
Neutralization of the CXC chemokine, macrophage inflammatory protein-2, attenuates bleomycin-induced pulmonary fibrosis.
J Immunol.
1999;
162
5511-5518
-
149
Moore B B, Arenberg D A, Addison C L, Keane M P, Strieter R M.
Tumor angiogenesis is regulated by CXC chemokines.
J Lab Clin Med.
1998;
132
97-103
-
150
Baggiolini M, Dewald B, Moser B.
Human chemokines: an update.
Annu Rev Immunol.
1997;
15
675-705
-
151
Robinson L A, Nataraj C, Thomas D W et al..
A role for fractalkine and its receptor (CX3CR1) in cardiac allograft rejection.
J Immunol.
2000;
165
6067-6072
-
152
Fong A M, Robinson L A, Steeber D A et al..
Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow.
J Exp Med.
1998;
188
1413-1419
-
153
Pan Y, Lloyd C, Zhou H et al..
Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. [published erratum appears in Nature 1997 Sep 4;389:100].
Nature.
1997;
387
611-617
-
154
Bazan J F, Bacon K B, Hardiman G et al..
A new class of membrane-bound chemokine with a CX3C motif.
Nature.
1997;
385
640-644
-
155
Zlotnik A, Yoshie O.
Chemokines: a new classification system and their role in immunity.
Immunity.
2000;
12
121-127
-
156
Murphy P M, Baggiolini M, Charo I F et al..
International union of pharmacology, XXII: Nomenclature for chemokine receptors.
Pharmacol Rev.
2000;
52
145-176
-
157
Segerer S, Nelson P J, Schlondorff D.
Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies.
J Am Soc Nephrol.
2000;
11
152-176
-
158
Ahuja S K, Murphy P M.
The CXC chemokines growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor.
J Biol Chem.
1996;
271
20545-20550
-
159
Bowman E P, Campbell J J, Druey K M, Scheschonka A, Kehrl J H, Butcher E C.
Regulation of chemotactic and proadhesive responses to chemoattractant receptors by RGS (regulator of G-protein signaling) family members.
J Biol Chem.
1998;
273
28040-28048
-
160
Strieter R M, Polverini P J, Kunkel S L et al..
The functional role of the ELR motif in CXC chemokine-mediated angiogenesis.
J Biol Chem.
1995;
270
27348-27357
-
161
Strieter R M, Belperio J A, Phillips R J, Keane M P.
Chemokines: angiogenesis and metastases in lung cancer.
Novartis Found Symp.
2004;
256
173-184
discussion 184-188
259-269
-
162
Strieter R M, Belperio J A, Keane M P.
CXC chemokines in vascular remodeling related to pulmonary fibrosis.
Am J Respir Cell Mol Biol.
2003;
29(Suppl 3)
S67-S69
-
163
Strieter R M, Belperio J A, Keane M P.
CXC chemokines in angiogenesis related to pulmonary fibrosis.
Chest.
2002;
122(Suppl 6)
298S-301S
-
164
Strieter R M, Polverini P J, Arenberg D A et al..
Role of C-X-C chemokines as regulators of angiogenesis in lung cancer.
J Leukoc Biol.
1995;
57
752-762
-
165 Murphy P M, Ahuja S K, Combadiere C, Gao J-L. Chemokiine receptors. In: Koch AE, Strieter RM Chemokines in Disease. Austin, TX RG Landes; 1996: 55-80
-
166
Repine J E, Beehler C J.
Neutrophils and adult respiratory distress syndrome: two interlocking perspectives in 1991.
Am Rev Respir Dis.
1991;
144
251-252
-
167
Lee W L, Downey G P.
Neutrophil activation and acute lung injury.
Curr Opin Crit Care.
2001;
7
1-7
-
168
Folkesson H G, Matthay M A, Hebert C A, Broaddus V C.
Acid aspiration-induced lung injury in rabbits is mediated by interleukin-8-dependent mechanisms.
J Clin Invest.
1995;
96
107-116
-
169
Keane M P, Donnelly S C, Belperio J A et al..
Imbalance in the expression of CXC chemokines correlates with bronchoalveolar lavage fluid angiogenic activity and procollagen levels in acute respiratory distress syndrome.
J Immunol.
2002;
169
6515-6521
-
170
Aikawa A, McLaughlin P J, McDicken I W et al..
TNF staining of graft biopsies in renal transplantation.
Transplantation.
1993;
56
231-233
-
171
Goodman R B, Strieter R M, Frevert C W et al..
Quantitative comparison of C-X-C chemokines produced by endotoxin-stimulated human alveolar macrophages.
Am J Physiol.
1998;
275(1 Pt 1)
L87-L95
-
172
Proost P, De Wolf-Peeters C, Conings R, Opdenakker G, Billiau A, Van Damme J.
Identification of a novel granulocyte chemotactic protein (GCP-2) from human tumor cells: in vitro and in vivo comparison with natural forms of GRO, IP-10, and IL-8.
J Immunol.
1993;
150
1000-1010
-
173
Villard J, Dayer-Pastore F, Hamacher J, Aubert J D, Schlegel-Haueter S, Nicod L P.
GRO alpha and interleukin-8 in Pneumocystis carinii or bacterial pneumonia and adult respiratory distress syndrome.
Am J Respir Crit Care Med.
1995;
152(5 Pt 1)
1549-1554
-
174
Miller E J, Cohen A B, Nagao S et al..
Elevated levels of NAP-1/interleukin-8 are present in the airspaces of patients with the adult respiratory distress syndrome and are associated with increased mortality.
Am Rev Respir Dis.
1992;
146
427-432
-
175
Jorens P G, Van Damme J, De Backer W et al..
Interleukin 8 (IL-8) in the bronchoalveolar lavage fluid from patients with the adult respiratory distress syndrome (ARDS) and patients at risk for ARDS.
Cytokine.
1992;
4
592-597
-
176
Donnelly S C, Strieter R M, Kunkel S L et al..
Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups.
Lancet.
1993;
341
643-647
-
177
Kurdowska A, Noble J M, Steinberg K P, Ruzinski J T, Hudson L D, Martin T R.
Anti-interleukin 8 autoantibody: interleukin 8 complexes in the acute respiratory distress syndrome: relationship between the complexes and clinical disease activity.
Am J Respir Crit Care Med.
2001;
163
463-468
-
178
Welbourn C R, Goldman G, Paterson I S, Valeri C R, Shepro D, Hechtman H B.
Pathophysiology of ischaemia reperfusion injury: central role of the neutrophil.
Br J Surg.
1991;
78
651-655
-
179
Yokoi K, Mukaida N, Harada A, Watanabe Y, Matsushima K.
Prevention of endotoxemia-induced acute respiratory distress syndrome-like lung injury in rabbits by a monoclonal antibody to IL-8.
Lab Invest.
1997;
76
375-384
-
180
Sue R D, Belperio J A, Burdick M D et al..
CXCR2 is critical to hyperoxia-induced lung injury.
J Immunol.
2004;
172
3860-3868
-
181
Belperio J A, Keane M P, Burdick M D et al..
Critical role for CXCR2 and CXCR2 ligands during the pathogenesis of ventilator-induced lung injury.
J Clin Invest.
2002;
110
1703-1716
-
182
Kotani M, Kotani T, Ishizaka A et al..
Neutrophil depletion attenuates interleukin-8 production in mild-overstretch ventilated normal rabbit lung.
Crit Care Med.
2004;
32
514-519
-
183
Pugin J, Dunn I, Jolliet P et al..
Activation of human macrophages by mechanical ventilation in vitro.
Am J Physiol.
1998;
275(6 Pt 1)
L1040-L1050
-
184
Vlahakis N E, Schroeder M A, Limper A H, Hubmayr R D.
Stretch induces cytokine release by alveolar epithelial cells in vitro.
Am J Physiol.
1999;
277(1 Pt 1)
L167-L173
-
185
Mourgeon E, Isowa N, Keshavjee S, Zhang X, Slutsky A S, Liu M.
Mechanical stretch stimulates macrophage inflammatory protein-2 secretion from fetal rat lung cells.
Am J Physiol Lung Cell Mol Physiol.
2000;
279(4)
L699-L706
-
186
Gerard C, Frossard J L, Bhatia M et al..
Targeted disruption of the beta-chemokine receptor CCR1 protects against pancreatitis-associated lung injury.
J Clin Invest.
1997;
100
2022-2027
-
187
Tokuda A, Itakura M, Onai N, Kimura H, Kuriyama T, Matsushima K.
Pivotal role of CCR1-positive leukocytes in bleomycin-induced lung fibrosis in mice.
J Immunol.
2000;
164
2745-2751
-
188
Gharaee-Kermani M, McCullumsmith R E, Charo I F, Kunkel S L, Phan S H.
CC-chemokine receptor 2 required for bleomycin-induced pulmonary fibrosis.
Cytokine.
2003;
24
266-276
-
189
Moore B B, Paine III R, Christensen P J et al..
Protection from pulmonary fibrosis in the absence of CCR2 signaling.
J Immunol.
2001;
167
4368-4377
-
190
Belperio J A, Keane M P, Burdick M D et al..
Critical role for the chemokine MCP-1/CCR2 in the pathogenesis of bronchiolitis obliterans syndrome.
J Clin Invest.
2001;
108
547-556
-
191
Belperio J A, Dy M, Murray L et al..
The role of the Th2 CC chemokine ligand CCL17 in pulmonary fibrosis.
J Immunol.
2004;
173
4692-4698
-
192
Naik A S, Kallapur S G, Bachurski C J et al..
Effects of ventilation with different positive end-expiratory pressures on cytokine expression in the preterm lamb lung.
Am J Respir Crit Care Med.
2001;
164
494-498
-
193
Belperio J A, Burdick M D, Keane M P et al..
The role of the CC chemokine, RANTES, in acute lung allograft rejection.
J Immunol.
2000;
165
461-472
-
194
Suga M, Maclean A A, Keshavjee S, Fischer S, Moreira J M, Liu M.
RANTES plays an important role in the evolution of allograft transplant-induced fibrous airway obliteration.
Am J Respir Crit Care Med.
2000;
162
1940-1948
-
195
Boehler A, Bai X H, Liu M et al..
Upregulation of T-helper 1 cytokines and chemokine expression in post-transplant airway obliteration.
Am J Respir Crit Care Med.
1999;
159
1910-1917
-
196
Monti G, Magnan A, Fattal M et al..
Intrapulmonary production of RANTES during rejection and CMV pneumonitis after lung transplantation.
Transplantation.
1996;
61
1757-1762
-
197
Panoskaltsis-Mortari A, Strieter R M, Hermanson J R et al..
Induction of monocyte- and T-cell-attracting chemokines in the lung during the generation of idiopathic pneumonia syndrome following allogeneic murine bone marrow transplantation.
Blood.
2000;
96
834-839
-
198
Sekine Y, Yasufuku K, Heidler K M et al..
Monocyte chemoattractant protein-1 and RANTES are chemotactic for graft infiltrating lymphocytes during acute lung allograft rejection.
Am J Respir Cell Mol Biol.
2000;
23
719-726
-
199
Altemeier W A, Matute-Bello G, Frevert C W et al..
Mechanical ventilation with moderate tidal volumes synergistically increases lung cytokine response to systemic endotoxin.
Am J Physiol Lung Cell Mol Physiol.
2004;
287
L533-L542
John A BelperioM.D.
Division of Pulmonary and Critical Care Medicine, The David Geffen School of Medicine at UCLA
900 Veteran Ave., 14-154 Warren Hall, Box 711922, Los Angeles, CA 90095-1786
eMail: jbelperio@mednet.ucla.edu