ABSTRACT
Integrins are the major receptors mediating adhesion to the extracellular matrix. Following ligand binding, conformational changes of integrins induce the recruitment of multiple signaling and scaffolding proteins that connect integrin tails to the actin cytoskeleton and permit activation of signaling pathways regulating cell proliferation, apoptosis, differentiation, and migration. In the ovary, extracellular matrix components present in the follicular basement membrane, around follicular cells, and in the follicular fluid participate in the regulation of follicular development, and a role of integrins in this process is strongly suggested. We discuss available data on integrin expression in ovary, integrin function in granulosa cells, and the possible involvement of integrins in follicular growth, atresia, and luteinization. We also discuss the potential role of oocyte integrins as receptors for sperm ADAMs (a disintegrin and metalloproteinase) in fertilization and the cooperation of integrins with proteinases in regulating proliferation, adhesion, migration, and invasion of ovarian surface epithelium cells in ovarian tumor development.
KEYWORDS
Integrin signaling - ovarian follicles - oocyte - fertilization - cancer
REFERENCES
1
Hynes R O.
Integrins: bidirectional, allosteric signaling machines.
Cell.
2002;
110
673-687
2
Plow E F, Haas T A, Zhang L, Loftus J, Smith J W.
Ligand binding to integrins.
J Biol Chem.
2000;
275
21785-21788
3
van der Flier A, Sonnenberg A.
Function and interactions of integrins.
Cell Tissue Res.
2001;
305
285-298
4
Shattil S J, Leavitt A D.
All in the family: primary megakaryocytes for studies of platelet alphaIIbbeta3 signaling.
Thromb Haemost.
2001;
86
259-265
5
Belkin A M, Zhidkova N I, Balzac F et al..
Beta 1D integrin displaces the beta 1A isoform in striated muscles: localization at junctional structures and signaling potential in nonmuscle cells.
J Cell Biol.
1996;
132
211-226
6
Adams J C, Watt F M.
Changes in keratinocyte adhesion during terminal differentiation: reduction in fibronectin binding precedes alpha 5 beta 1 integrin loss from the cell surface.
Cell.
1990;
63
425-435
7
Brooks P C, Clark R A, Cheresh D A.
Requirement of vascular integrin alpha v beta 3 for angiogenesis.
Science.
1994;
264
569-571
8
Ginsberg M H, Du X, Plow E F.
Inside-out integrin signalling.
Curr Opin Cell Biol.
1992;
4
766-771
9
Shimaoka M, Springer T A.
Therapeutic antagonists and conformational regulation of integrin function.
Nat Rev Drug Discov.
2003;
2
703-716
10
Calderwood D A.
Integrin activation.
J Cell Sci.
2004;
117
657-666
11
Laudanna C, Kim J Y, Constantin G, Butcher E.
Rapid leukocyte integrin activation by chemokines.
Immunol Rev.
2002;
186
37-46
12
van Kooyk Y, Figdor C G.
Avidity regulation of integrins: the driving force in leukocyte adhesion.
Curr Opin Cell Biol.
2000;
12
542-547
13
Hogg N, Henderson R, Leitinger B, McDowall A, Porter J, Stanley P.
Mechanisms contributing to the activity of integrins on leukocytes.
Immunol Rev.
2002;
186
164-171
14
Isenberg W M, McEver R P, Phillips D R, Shuman M A, Bainton D F.
The platelet fibrinogen receptor: an immunogold-surface replica study of agonist-induced ligand binding and receptor clustering.
J Cell Biol.
1987;
104
1655-1663
15
Erb E M, Tangemann K, Bohrmann B, Muller B, Engel J.
Integrin alphaIIb beta3 reconstituted into lipid bilayers is nonclustered in its activated state but clusters after fibrinogen binding.
Biochemistry.
1997;
36
7395-7402
16
Li R, Mitra N, Gratkowski H et al..
Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations.
Science.
2003;
300
795-798
17
Xiong J P, Stehle T, Diefenbach B et al..
Crystal structure of the extracellular segment of integrin alpha Vbeta3.
Science.
2001;
294
339-345
18
Xiong J P, Stehle T, Zhang R et al..
Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand.
Science.
2002;
296
151-155
19
Xiao T, Takagi J, Coller B S, Wang J H, Springer T A.
Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics.
Nature.
2004;
432
59-67
20
Emsley J, Knight C G, Farndale R W, Barnes M J, Liddington R C.
Structural basis of collagen recognition by integrin alpha2beta1.
Cell.
2000;
101
47-56
21
Shimaoka M, Xiao T, Liu J H et al..
Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation.
Cell.
2003;
112
99-111
22
Liddington R C, Ginsberg M H.
Integrin activation takes shape.
J Cell Biol.
2002;
158
833-839
23
Xiong J P, Stehle T, Goodman S L, Arnaout M A.
New insights into the structural basis of integrin activation.
Blood.
2003;
102
1155-1159
24
Humphries M J, McEwan P A, Barton S J, Buckley P A, Bella J, Mould A P.
Integrin structure: heady advances in ligand binding, but activation still makes the knees wobble.
Trends Biochem Sci.
2003;
28
313-320
25
Beglova N, Blacklow S C, Takagi J, Springer T A.
Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation.
Nat Struct Biol.
2002;
9
282-287
26
Takagi J, Petre B M, Walz T, Springer T A.
Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling.
Cell.
2002;
110
599-611
27
Takagi J, Strokovich K, Springer T A, Walz T.
Structure of integrin alpha5beta1 in complex with fibronectin.
EMBO J.
2003;
22
4607-4615
28
Luo B H, Springer T A, Takagi J.
Stabilizing the open conformation of the integrin headpiece with a glycan wedge increases affinity for ligand.
Proc Natl Acad Sci USA.
2003;
100
2403-2408
29
Luo B H, Strokovich K, Walz T, Springer T A, Takagi J.
Allosteric beta1 integrin antibodies that stabilize the low affinity state by preventing the swing-out of the hybrid domain.
J Biol Chem.
2004;
279
27466-27471
30
Calzada M J, Alvarez M V, Gonzalez-Rodriguez J.
Agonist-specific structural rearrangements of integrin alpha IIbbeta 3. Confirmation of the bent conformation in platelets at rest and after activation.
J Biol Chem.
2002;
277
39899-39908
31
Adair B D, Xiong J P, Maddock C, Goodman S L, Arnaout M A, Yeager M.
Three-dimensional EM structure of the ectodomain of integrin {alpha}V{beta}3 in a complex with fibronectin.
J Cell Biol.
2005;
168
1109-1118
32
Adair B D, Yeager M.
Three-dimensional model of the human platelet integrin alpha IIbbeta 3 based on electron cryomicroscopy and x-ray crystallography.
Proc Natl Acad Sci USA.
2002;
99
14059-14064
33
Critchley D R.
Focal adhesions-the cytoskeletal connection.
Curr Opin Cell Biol.
2000;
12
133-139
34
Calderwood D A, Shattil S J, Ginsberg M H.
Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling.
J Biol Chem.
2000;
275
22607-22610
35
Liu S, Calderwood D A, Ginsberg M H.
Integrin cytoplasmic domain-binding proteins.
J Cell Sci.
2000;
113(pt 20)
3563-3571
36
Brakebusch C, Fassler R.
The integrin-actin connection, an eternal love affair.
EMBO J.
2003;
22
2324-2333
37
Geiger B, Bershadsky A, Pankov R, Yamada K M.
Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk.
Nat Rev Mol Cell Biol.
2001;
2
793-805
38
Tadokoro S, Shattil S J, Eto K et al..
Talin binding to integrin beta tails: a final common step in integrin activation.
Science.
2003;
302
103-106
39
Giancotti F G, Ruoslahti E.
Integrin signaling.
Science.
1999;
285
1028-1032
40
Stupack D G, Cheresh D A.
Get a ligand, get a life: integrins, signaling and cell survival.
J Cell Sci.
2002;
115
3729-3738
41
Schwartz M A, Ginsberg M H.
Networks and crosstalk: integrin signalling spreads.
Nat Cell Biol.
2002;
4
E65-E68
42
DeMali K A, Burridge K.
Coupling membrane protrusion and cell adhesion.
J Cell Sci.
2003;
116
2389-2397
43
Rodgers R J, van Wezel I L, Irving-Rodgers H F, Lavranos T C, Irvine C M, Krupa M.
Roles of extracellular matrix in follicular development.
J Reprod Fertil Suppl.
1999;
54
343-352
44
Irving-Rodgers H F, Harland M L, Rodgers R J.
A novel basal lamina matrix of the stratified epithelium of the ovarian follicle.
Matrix Biol.
2004;
23
207-217
45
Anderson R, Fassler R, Georges-Labouesse E et al..
Mouse primordial germ cells lacking beta1 integrins enter the germline but fail to migrate normally to the gonads.
Development.
1999;
126
1655-1664
46
Zuccotti M, Giorgi Rossi P, Fiorillo E, Garagna S, Forabosco A, Redi C A.
Timing of gene expression and oolemma localization of mouse alpha6 and beta1 integrin subunits during oogenesis.
Dev Biol.
1998;
200
27-34
47
Giebel J, de Souza P, Rune G M.
Expression of integrins in marmoset (Callithrix jacchus ) ovary during folliculogenesis.
Tissue Cell.
1996;
28
379-385
48
Arraztoa J A, Zhou J, Marcu D et al..
Identification of genes expressed in primate primordial oocytes.
Hum Reprod.
2005;
20
476-483
49
Burns K H, Owens G E, Fernandez J M, Nilson J H, Matzuk M M.
Characterization of integrin expression in the mouse ovary.
Biol Reprod.
2002;
67
743-751
50
Clavero A, Castilla J A, Martinez L, Mendoza N, Fontes J, Maldonado V.
Expression of integrin fraction and adhesion molecules on human granulosa cells and its relation with oocyte maturity and follicular steroidogenesis.
J Assist Reprod Genet.
2004;
21
187-195
51
Le Bellego F, Pisselet C, Huet C, Monget P, Monniaux D.
Laminin-alpha6beta1 integrin interaction enhances survival and proliferation and modulates steroidogenesis of ovine granulosa cells.
J Endocrinol.
2002;
172
45-59
52
Honda T, Fujiwara H, Ueda M, Maeda M, Mori T.
Integrin alpha 6 is a differentiation antigen of human granulosa cells.
J Clin Endocrinol Metab.
1995;
80
2899-2905
53
Fujiwara H, Ueda M, Takakura K, Mori T, Maeda M.
A porcine homolog of human integrin alpha 6 is a differentiation antigen of granulosa cells.
Biol Reprod.
1995;
53
407-417
54
Nakamura K, Fujiwara H, Higuchi T et al..
Integrin alpha6 is involved in follicular growth in mice.
Biochem Biophys Res Commun.
1997;
235
524-528
55
Giebel J, Rune G M.
Relationship between expression of integrins and granulosa cell apoptosis in ovarian follicles of the marmoset (Callithrix jacchus ).
Tissue Cell.
1997;
29
525-531
56
Taddei I, Faraldo M M, Teuliere J, Deugnier M A, Thiery J P, Glukhova M A.
Integrins in mammary gland development and differentiation of mammary epithelium.
J Mammary Gland Biol Neoplasia.
2003;
8
383-394
57
Frojdman K, Pelliniemi L J.
Alpha 6 subunit of integrins in the development and sex differentiation of the mouse ovary.
Dev Dyn.
1995;
202
397-404
58
Yang J T, Rayburn H, Hynes R O.
Embryonic mesodermal defects in alpha 5 integrin-deficient mice.
Development.
1993;
119
1093-1105
59
Kim S, Harris M, Varner J A.
Regulation of integrin alpha vbeta 3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A.
J Biol Chem.
2000;
275
33920-33928
60
Boudreau N J, Varner J A.
The homeobox transcription factor Hox D3 promotes integrin alpha5beta1 expression and function during angiogenesis.
J Biol Chem.
2004;
279
4862-4868
61
Gospodarowicz D, Delgado D, Vlodavsky I.
Permissive effect of the extracellular matrix on cell proliferation in vitro.
Proc Natl Acad Sci USA.
1980;
77
4094-4098
62
Aharoni D, Meiri I, Atzmon R, Vlodavsky I, Amsterdam A.
Differential effect of components of the extracellular matrix on differentiation and apoptosis.
Curr Biol.
1997;
7
43-51
63
Huet C, Pisselet C, Mandon-Pepin B, Monget P, Monniaux D.
Extracellular matrix regulates ovine granulosa cell survival, proliferation and steroidogenesis: relationships between cell shape and function.
J Endocrinol.
2001;
169
347-360
64
Le Bellego F, Fabre S, Pisselet C, Monniaux D.
Cytoskeleton reorganization mediates alpha6beta1 integrin-associated actions of laminin on proliferation and survival, but not on steroidogenesis of ovine granulosa cells.
Reprod Biol Endocrinol.
2005;
3
19
http://Available at: www.nbej.com/content/3/1/29
65
Chang S C, Anderson W, Lewis J C, Ryan R J, Kang Y K.
The porcine ovarian follicle. II. Electron microscopic study of surface features of granulosa cells at different stages of development.
Biol Reprod.
1977;
16
349-357
66
Cran D G, Musk L.
The distribution of actin in sheep ovaries.
J Exp Zool.
1985;
235
375-380
67
Lipner H, Cross N L.
Morphology of the membrana granulosa of the ovarian follicle.
Endocrinology.
1968;
82
638-641
68
Monniaux D, Mandon-Pepin B, Monget P.
Follicular atresia, a programmed wastage.
Med Sci (Paris).
1999;
15
157-166
69
Han B, Bai X H, Lodyga M et al..
Conversion of mechanical force into biochemical signaling.
J Biol Chem.
2004;
279
54793-54801
70
Ingber D E, Tensegrity I I.
How structural networks influence cellular information processing networks.
J Cell Sci.
2003;
116
1397-1408
71
Mammoto A, Huang S, Moore K, Oh P, Ingber D E.
Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition.
J Biol Chem.
2004;
279
26323-26330
72
Ruoslahti E, Reed J C.
Anchorage dependence, integrins, and apoptosis.
Cell.
1994;
77
477-478
73
Bagavandoss P, Midgley Jr A R, Wicha M.
Developmental changes in the ovarian follicular basal lamina detected by immunofluorescence and electron microscopy.
J Histochem Cytochem.
1983;
31
633-640
74
Huet C, Monget P, Pisselet C, Monniaux D.
Changes in extracellular matrix components and steroidogenic enzymes during growth and atresia of antral ovarian follicles in the sheep.
Biol Reprod.
1997;
56
1025-1034
75
Besnard N, Pisselet C, Zapf J, Hornebeck W, Monniaux D, Monget P.
Proteolytic activity is involved in changes in intrafollicular insulin-like growth factor-binding protein levels during growth and atresia of ovine ovarian follicles.
Endocrinology.
1996;
137
1599-1607
76
Sato K, Katagiri K, Hattori S et al..
Laminin 5 promotes activation and apoptosis of the T cells expressing alpha3beta1 integrin.
Exp Cell Res.
1999;
247
451-460
77
Seewaldt V L, Mrozek K, Sigle R et al..
Suppression of p53 function in normal human mammary epithelial cells increases sensitivity to extracellular matrix-induced apoptosis.
J Cell Biol.
2001;
155
471-486
78
Bussenot I, Ferre G, Azoulay-Barjonet C, Murgo C, Vieitez G, Parinaud J.
Culture of human preovulatory granulosa cells: effect of extracellular matrix on steroidogenesis.
Biol Cell.
1993;
77
181-186
79
Carnegie J A, Byard R, Dardick I, Tsang B K.
Culture of granulosa cells in collagen gels: the influence of cell shape on steroidogenesis.
Biol Reprod.
1988;
38
881-890
80
Ben-Rafael Z, Benadiva C A, Mastroianni Jr L et al..
Collagen matrix influences the morphologic features and steroid secretion of human granulosa cells.
Am J Obstet Gynecol.
1988;
159
1570-1574
81
Aten R F, Kolodecik T R, Behrman H R.
A cell adhesion receptor antiserum abolishes, whereas laminin and fibronectin glycoprotein components of extracellular matrix promote, luteinization of cultured rat granulosa cells.
Endocrinology.
1995;
136
1753-1758
82
Sites C K, Kessel B, LaBarbera A R.
Adhesion proteins increase cellular attachment, follicle-stimulating hormone receptors, and progesterone production in cultured porcine granulosa cells.
Proc Soc Exp Biol Med.
1996;
212
78-83
83
Fujiwara H, Honda T, Ueda M et al..
Laminin suppresses progesterone production by human luteinizing granulosa cells via interaction with integrin alpha 6 beta 1.
J Clin Endocrinol Metab.
1997;
82
2122-2128
84
Kaji K, Kudo A.
The mechanism of sperm-oocyte fusion in mammals.
Reproduction.
2004;
127
423-429
85
Capmany G, Mart M, Santalo J, Bolton V N.
Distribution of alpha3, alpha5 and alpha(v) integrin subunits in mature and immature human oocytes.
Mol Hum Reprod.
1998;
4
951-956
86
Ziyyat A, Naud-Barriant N, Barraud-Lange V et al..
Cyclic FEE peptide increases human gamete fusion and potentiates its RGD-induced inhibition.
Hum Reprod.
2005;
20
3452-3458
87
Fusi F M, Vignali M, Gailit J, Bronson R A.
Mammalian oocytes exhibit specific recognition of the RGD (Arg-Gly-Asp) tripeptide and express oolemmal integrins.
Mol Reprod Dev.
1993;
36
212-219
88
Chen H, Sampson N S.
Mediation of sperm-egg fusion: evidence that mouse egg alpha6beta1 integrin is the receptor for sperm fertilin beta.
Chem Biol.
1999;
6
1-10
89
Evans J P.
Fertilin beta and other ADAMs as integrin ligands: insights into cell adhesion and fertilization.
Bioessays.
2001;
23
628-639
90
Almeida E A, Huovila A P, Sutherland A E et al..
Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor.
Cell.
1995;
81
1095-1104
91
Eto K, Huet C, Tarui T et al..
Functional classification of ADAMs based on a conserved motif for binding to integrin alpha 9beta 1: implications for sperm-egg binding and other cell interactions.
J Biol Chem.
2002;
277
17804-17810
92
Zhu X, Evans J P.
Analysis of the roles of RGD-binding integrins, alpha(4)/alpha(9) integrins, alpha(6) integrins, and CD9 in the interaction of the fertilin beta (ADAM2) disintegrin domain with the mouse egg membrane.
Biol Reprod.
2002;
66
1193-1202
93
He Z Y, Brakebusch C, Fassler R, Kreidberg J A, Primakoff P, Myles D G.
None of the integrins known to be present on the mouse egg or to be ADAM receptors are essential for sperm-egg binding and fusion.
Dev Biol.
2003;
254
226-237
94
Sengoku K, Takuma N, Miyamoto T, Horikawa M, Ishikawa M.
Integrins are not involved in the process of human sperm-oolemmal fusion.
Hum Reprod.
2004;
19
639-644
95
Reynolds L E, Wyder L, Lively J C et al..
Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins.
Nat Med.
2002;
8
27-34
96
Carmeliet P.
Integrin indecision.
Nat Med.
2002;
8
14-16
97
Auersperg N, Edelson M I, Mok S C, Johnson S W, Hamilton T C.
The biology of ovarian cancer.
Semin Oncol.
1998;
25
281-304
98
Johnson J, Canning J, Kaneko T, Pru J K, Tilly J L.
Germline stem cells and follicular renewal in the postnatal mammalian ovary.
Nature.
2004;
428
145-150
99
Yang W L, Godwin A K, Xu X X.
Tumor necrosis factor-alpha-induced matrix proteolytic enzyme production and basement membrane remodeling by human ovarian surface epithelial cells: molecular basis linking ovulation and cancer risk.
Cancer Res.
2004;
64
1534-1540
100
Murdoch J, Van Kirk E A, Murdoch W J.
Hormonal control of urokinase plasminogen activator secretion by sheep ovarian surface epithelial cells.
Biol Reprod.
1999;
61
1487-1491
101
Goldman S, Shalev E.
MMPS and TIMPS in ovarian physiology and pathophysiology.
Front Biosci.
2004;
9
2474-2483
102
Skubitz A P, Bast Jr R C, Wayner E A, Letourneau P C, Wilke M S.
Expression of alpha 6 and beta 4 integrins in serous ovarian carcinoma correlates with expression of the basement membrane protein laminin.
Am J Pathol.
1996;
148
1445-1461
103
Carreiras F, Denoux Y, Staedel C, Lehmann M, Sichel F, Gauduchon P.
Expression and localization of alpha v integrins and their ligand vitronectin in normal ovarian epithelium and in ovarian carcinoma.
Gynecol Oncol.
1996;
62
260-267
104
Ahmed N, Pansino F, Baker M, Rice G, Quinn M.
Association between alphavbeta6 integrin expression, elevated p42/44 kDa MAPK, and plasminogen-dependent matrix degradation in ovarian cancer.
J Cell Biochem.
2002;
84
675-686
105
Maubant S, Cruet-Hennequart S, Dutoit S et al..
Expression of alpha V-associated integrin beta subunits in epithelial ovarian cancer and its relation to prognosis in patients treated with platinum-based regimens.
J Mol Histol.
2005;
36
119-129
106
Chapman H A.
Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration.
Curr Opin Cell Biol.
1997;
9
714-724
107
Chapman H A, Wei Y.
Protease crosstalk with integrins: the urokinase receptor paradigm.
Thromb Haemost.
2001;
86
124-129
108
Young T N, Rodriguez G C, Moser T L, Bast Jr R C, Pizzo S V, Stack M S.
Coordinate expression of urinary-type plasminogen activator and its receptor accompanies malignant transformation of the ovarian surface epithelium.
Am J Obstet Gynecol.
1994;
170
1285-1296
109
Kugler M C, Wei Y, Chapman H A.
Urokinase receptor and integrin interactions.
Curr Pharm Des.
2003;
9
1565-1574
110
Wei Y, Czekay R P, Robillard L et al..
Regulation of alpha5beta1 integrin conformation and function by urokinase receptor binding.
J Cell Biol.
2005;
168
501-511
111
Beck V, Herold H, Benge A et al..
ADAM15 decreases integrin alphavbeta3/vitronectin-mediated ovarian cancer cell adhesion and motility in an RGD-dependent fashion.
Int J Biochem Cell Biol.
2005;
37
590-603
112
Miller B J, Georges-Labouesse E, Primakoff P, Myles D G.
Normal fertilization occurs with eggs lacking the integrin alpha6beta1 and is CD9-dependent.
J Cell Biol.
2000;
149
1289-1296
113
Hynes R O.
Targeted mutations in cell adhesion genes: what have we learned from them?.
Dev Biol.
1996;
180
402-412
114
Judson P L, He X, Cance W G.
Van Le L. Overexpression of focal adhesion kinase, a protein tyrosine kinase, in ovarian carcinoma.
Cancer.
1999;
86
1551-1556
115
Sood A K, Coffin J E, Schneider G B et al..
Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion.
Am J Pathol.
2004;
165
1087-1095
116
Thant A A, Nawa A, Kikkawa F et al..
Fibronectin activates matrix metalloproteinase-9 secretion via the MEK1-MAPK and the PI3K-Akt pathways in ovarian cancer cells.
Clin Exp Metastasis.
2000;
18
423-428
117
Ahmed N, Riley C, Oliva K, Stutt E, Rice G E, Quinn M A.
Integrin-linked kinase expression increases with ovarian tumour grade and is sustained by peritoneal tumour fluid.
J Pathol.
2003;
201
229-237
Danielle MonniauxPh.D.
Physiologie de la Reproduction et des Comportements
UMR 6175 INRA-CNRS-Université de Tours-Haras Nationaux, INRA 37380 Nouzilly, France
Email: monniaux@tours.inra.fr