Subscribe to RSS
DOI: 10.1055/s-2006-950247
Benzenesulfinyl Morpholine: A New Promoter for One-Pot Oligosaccharide Synthesis Using Thioglycosides by Pre-Activation Strategy
Publication History
Publication Date:
09 October 2006 (online)
Abstract
Benzenesulfinyl morpholine (BSM) has been applied as a new promoter for the activation of thioglycosides. This proceeds by the in situ reaction of BSM with trifluoromethanesulfonic anhydride, which subsequently activates thioglycosides for glycosylations. Importantly, this reagent works well in our pre-activation one-pot oligosaccharide assembly strategy.
Key words
benzenesulfinyl morpholine - promoter - thioglycoside - pre-activation - one-pot oligosaccharide assembly
-
1a
Danishefsky SJ.Bilodeau MT. Angew. Chem., Int. Ed. Engl. 1996, 35: 1380 -
1b
Seeberger PH.Danishefsky SJ. Acc. Chem. Res. 1998, 31: 685 -
1c
Plante OJ.Palmacci ER.Seeberger PH. Science 2001, 291: 1523 -
1d
Plante OJ.Palmacci ER.Seeberger PH. Adv. Carbohydr. Chem. Biochem. 2003, 58: 35 -
1e
Seeberger PH.Haase WC. Chem. Rev. 2000, 100: 4349 -
2a
Kanie O.Ito Y.Ogawa T. J. Am. Chem. Soc. 1984, 116: 12073 -
2b
Demchenko AV.De Meo C. Tetrahedron Lett. 2002, 43: 8819 -
2c
Chang GX.Lowary TL. Org. Lett. 2000, 2: 1505 -
2d
Paulsen H. Angew. Chem., Int. Ed. Engl. 1995, 34: 1432 -
2e
Demchenko AV. Lett. Org. Chem. 2005, 2: 580 -
3a
Yamago S.Yamada T.Maruyama T.Yoshida J.-I. Angew. Chem. Int. Ed. 2004, 43: 2145 -
3b
Yamago S.Yamada T.Hara O.Ito H.Mino Y.Yoshida J.-I. Org. Lett. 2001, 3: 3867 -
3c
Nguyen HM.Poole JL.Gin DY. Angew. Chem. Int. Ed. 2001, 40: 414 -
3d
Friesen RW.Danishefsky SJ. J. Am. Chem. Soc. 1989, 111: 6656 -
3e
Yamago S.Yamada T.Ito H. Chem. Eur. J. 2005, 11: 6159 -
4a
Codee JDC.van den Bos LJ.Litjens REJN.Overkleeft HS.van Boeckel CAA.van Boom JH.van der Marel GA. Tetrahedron 2004, 60: 1057 -
4b
Lahmann M.Oscarson S. Can. J. Chem. 2002, 80: 889 -
4c
Zhu T.Boons G.-J. Org. Lett. 2001, 3: 4201 -
5a
Mong TK.-K.Lee H.-K.Duron SG.Wong C.-H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100: 797 -
5b
Ritter TK.Mong TK.-K.Liu H.Nakatani T.Wong C.-H. Angew. Chem. Int. Ed. 2003, 42: 4657 -
5c
Mong TK.-K.Wong C.-H. Angew. Chem. Int. Ed. 2002, 41: 4087 -
5d
Lee J.-C.Wu C.-Y.Apon JV.Siuzdak G.Wong C.-H. Angew. Chem. Int. Ed. 2006, 45: 2753 -
5e
Ye X.-S.Wong C.-H. J. Org. Chem. 2000, 65: 2410 -
5f
Zhang Z.Ollmann IR.Ye X.-S.Wischnat R.Baasov T.Wong C.-H. J. Am. Chem. Soc. 1999, 121: 734 -
5g
Wang Y.Huang X.Zhang L.-H.Ye X.-S. Org. Lett. 2004, 6: 4415 -
5h
Wang Y.Yan Q.Wu J.Zhang L.-H.Ye X.-S. Tetrahedron 2005, 61: 4313 -
5i
Tanaka H.Adachi M.Tsukamoto H.Ikeda T.Yamada H.Takahashi T. Org. Lett. 2002, 4: 4213 -
5j
Douglas NL.Ley SV.Lucking U.Warriner SL. J. Chem. Soc., Perkin Trans. 1 1998, 51 -
5k
Ley SV.Priepke HWM. Angew. Chem., Int. Ed. Engl. 1994, 33: 2292 -
5l
Raghavan S.Kahne D. J. Am. Chem. Soc. 1993, 115: 1580 -
5m
Yamada H.Harada T.Takahashi T. J. Am. Chem. Soc. 1994, 116: 7919 -
5n
Wang Y.Zhang L.-H.Ye X.-S. Comb. Chem. High Throughput Screening 2006, 9: 63 - 6
Huang X.Huang L.Wang H.Ye X.-S. Angew. Chem. Int. Ed. 2004, 43: 5221 -
7a
Oscarson S. In Carbohydrates in Chemistry and Biology Vol. 1:Ernst B.Hart GW.Sinay P. Wiley-VCH; Weinheim: 2000. p.93-116 -
7b
Codee JDC.Litjens REJN.van den Bos LJ.Overkleeft HS.van der Marel GA. Chem. Soc. Rev. 2005, 34: 769 -
8a
Veenenman GH.van Boom JH. Tetrahedron Lett. 1990, 31: 275 -
8b
Konradsson P.Udodong UE.Fraser-Reid B. Tetrahedron Lett. 1990, 31: 4313 - 9
Fugedi P.Garegg PJ. Carbohydr. Res. 1986, 149: C9 - 10
Dasgupta F.Garegg PJ. Carbohydr. Res. 1988, 177: C13 - 11
Ito Y.Ogawa T. Tetrahedron Lett. 1988, 29: 1061 - 12
Crich D.Smith M. Org. Lett. 2000, 2: 4067 - 13
Crich D.Smith M. J. Am. Chem. Soc. 2001, 123: 9015 -
14a
Garcia BA.Poole JL.Gin DY. J. Am. Chem. Soc. 1997, 119: 7597 -
14b
Codee JDC.Litjens REJN.den Heeten R.Overkleeft HS.van Boom JH.van der Marel GA. Org. Lett. 2003, 5: 1519 - 15
Duron SG.Polat T.Wong C.-H. Org. Lett. 2004, 6: 839 -
16a
Crich D.Sun S. Tetrahedron 1998, 54: 8321 -
16b
Crich D.Cai W. J. Org. Chem. 1999, 64: 4926 -
16c
Martichonok V.Whitesides GM. J. Org. Chem. 1996, 61: 1702 - For the preparation of BSM, see:
-
18a
Kice JL.Liu CCA. J. Org. Chem. 1979, 44: 1918 -
18b
Harpp DN.Back TG. Tetrahedron Lett. 1972, 13: 5313 - 19
Burkart MD.Zhang Z.Hung S.-C.Wong C.-H. J. Am. Chem. Soc. 1997, 119: 11743 - 20
Garegg PJ. Pure. Appl. Chem. 1984, 56: 845 - 23
Debelder AN. Adv. Carbohydr.Chem. 1965, 20: 219
References and Notes
Other compounds such as methyl phenyl sulfoxide, 2-(phenylthio)quinoline, 2-(phenylthio)thiophene, N-phenylsulfanyl phthalimide, N-benzenesulfenyl succinimide were examined, but all these compounds did not give better results than BSM.
21
General Procedure for Oligosaccharide Assembly.
To a solution of 1 (100.0 mg, 0.155 mmol), and BSM (49.1 mg, 0.233 mmol) in CH2Cl2 (4 mL) was added 4 Å MS (40 mg), and the mixture was cooled down to -70 °C, and then Tf2O (26.2 mg, 0.093 mmol) was added, after 5 min, 1 was consumed completely. After addition of the acceptor 2 (66.7 mg, 0.140 mmol) to the preactivated donor, the mixture was stirred for 15 min. Then the reaction mixture was warmed up to r.t. for 15 min. The mixture was cooled down to -70 °C again, Tf2O (43.7 mg, 0.155 mmol) was added, after 5 min, and the new formed disaccharide was consumed completely. After addition of the acceptor 11 (71.9 mg, 0.155 mmol) to the preactivated donor, the mixture was stirred for 15 min. Then the reaction mixture was warmed up to r.t. for 15 min. The course of the reaction was monitored by TLC. Then, Et3N (0.5 mL) was then added to the mixture. The precipitate was filtered off and the filtrate was concentrated. The residue was purified by column chromatography on silica gel to give 12 (126.9 mg, 52%). 1H NMR (500 MHz, CDCl3): δ = 2.97 (s, 1 H), 3.16 (dd, 1 H, J = 6.0, 9.0 Hz), 3.22-3.28 (m, 2 H), 3.39 (t, 1 H, J = 7.5 Hz), 3.46-3.48 (m, 5 H), 3.60-3.68 (m, 4 H), 3.73 (d, 1 H, J = 11.0 Hz), 3.79 (dd, 1 H, J = 3.5, 10.0 Hz), 3.84 (t, 1 H, J = 6.5 Hz), 3.88-3.91 (m, 1 H), 3.94-3.97 (m, 1 H), 4.11-4.26 (m, 6 H), 4.35 (t, 2 H, J = 12.0 Hz), 4.42-4.53 (m, 4 H), 4.58-4.63 (m, 2 H), 4.69 (d, 1 H, J = 6.0 Hz), 4.77-4.86 (m, 4 H), 5.04 (d, 1 H, J = 3.5 Hz, H-1′′), 5.10 (d, 1 H, J = 11.0 Hz), 5.32 (s, 1 H), 5.61 (dd, 1 H, J = 8.5, 10.0 Hz), 7.06-7.38 (m, 40 H), 7.48-7.50 (m, 3 H), 7.97-7.99 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 56.95, 66.60, 68.36, 68.73, 68.80, 69.84, 71.37, 72.13, 72.26, 73.09, 73.14, 73.22, 74.41, 74.64, 74.68, 74.92, 75.26, 75.48, 75.84, 77.64, 78.58, 81.96, 83.03, 95.55, 100.95, 101.20, 104.48, 126.39, 127.09, 127.29, 127.37, 127.45, 127.49, 127.58, 127.65, 127.81, 127.91, 127.99, 128.09, 128.15, 128.23, 128.34, 128.41, 128.70, 129.76, 129.85, 133.01, 137.77, 138.16, 138.46, 138.60, 138.65, 138.78, 139.07, 164.69. HRMS (ESI): m/z calcd for C82H88NO17 [M + NH4]+: 1358.6047; found: 1358.6053.
Preparation of Trisaccharide 13.
To a solution of compound 12 (80.0 mg, 0.060 mmol) in MeOH (10 mL) was added MeONa/MeOH (30 wt%, 0.4 mL), and the reaction mixture was stirred for 8 h at r.t. The mixture was neutralized (H+ resin, weak acid), filtered and concentrated. The resulting residue was dissolved in THF-AcOH-H2O (2:2:1, 10 mL) and then Pd/C (10.0 mg) was added. The reaction mixture was stirred under 1 atm of H2 for 24 h. The Pd/C was filtered off and the filtrate was concentrated. The product was purified by C-18 reverse-phase column chromatography to give 13 (28.0 mg, 90%). 1H NMR (500 MHz, D2O): δ = 3.29-3.30 (m, 1 H), 3.58 (s, 3 H), 3.61-3.63 (m, 1 H), 3.65-3.68 (m, 3 H), 3.71-3.87 (m, 8 H), 3.94-4.02 (m, 3 H), 4.18-4.21 (m, 2 H), 4.41 (d, 1 H, J = 8.0 Hz, H-1), 4.52 (d, 1 H, J = 7.5 Hz, H-1′), 5.14 (d, 1 H, J = 4.0 Hz, H-1′′). 13C NMR (125 MHz, D2O): δ = 57.98, 60.88, 61.68, 61.74, 65.56, 68.95, 69.89, 70.03, 70.33, 71.59, 73.52, 75.21, 75.49, 75.80, 77.96, 79.38, 96.19, 103.60, 103.83. HRMS (ESI): m/z calcd for C19H34O16Na [M + Na]+: 541.1739; found: 541.1748.
Data for Compound 16. 1H NMR (500 MHz, CDCl3): δ = 1.28 (s, 3 H), 1.31 (s, 3 H), 1.43 (s, 3 H), 1.47 (s, 3 H), 3.20-3.24 (m, 2 H), 3.32-3.40 (m, 3 H), 3.47-3.53 (m, 3 H), 3.64 (dd, 1 H, J = 7.5, 10.0 Hz), 3.69 (dd, 1 H, J = 3.0, 10.0 Hz), 3.82-3.89 (m, 2 H), 3.95-4.04 (m, 5 H), 4.12 (d, 1 H, J = 7.5 Hz), 4.18 (d, 1 H, J = 9.0 Hz), 4.22-4.30 (m, 5 H), 4.33 (d, 1 H, J = 10.5 Hz, H-1′), 4.36 (d, 1 H, J = 11.5 Hz), 4.42-4.58 (m, 7 H), 4.62 (d, 1 H, J = 11.0 Hz, H-1′′), 4.67 (t, J = 11.5 Hz, 2 H), 4.78 (d, 1 H, J = 11.0 Hz), 4.86 (d, 1 H, J = 11.5 Hz), 5.00 (d, 1 H, J = 11.0 Hz), 5.09 (d, 1 H, J = 4.0 Hz, H-1′′′), 5.39 (s, 1 H), 5.53 (d, 1 H, J = 5.0 Hz, H-1), 5.73 (dd, 1 H, J = 8.5, 10.0 Hz), 7.09-7.31 (m, 38 H, ArH), 7.36-7.41 (m, 3 H), 7.52 (d, 2 H, J = 8.0 Hz), 7.97 (d, 2 H, J = 8.0 Hz). 13C NMR (125 MHz, CDCl3): δ = 24.47, 25.02, 26.01, 26.03, 66.40, 66.68, 67.29, 68.80, 69.04, 69.69, 69.84, 70.07, 70.48, 70.74, 71.35, 72.08, 72.19, 73.16, 73.26, 74.26, 74.61, 74.69, 74.94, 75.02, 75.31, 75.86, 78.56, 81.40, 84.38, 95.23, 96.33, 100.99 (2 C), 104.30, 108.51, 109.28, 126.39, 127.18, 127.26, 127.33, 127.36, 127.42, 127.47, 127.55, 127.71, 127.80, 127.98, 128.07, 128.10, 128.13, 128.19, 128.21, 128.26, 128.29, 128.61, 128.81, 129.86, 129.99, 132.72, 137.65, 138.23, 138.60, 138.68, 138.77, 138.81, 164.74. HRMS (ESI): m/z calcd for C93H104NO22 [M + NH4]+: 1586.7045; found: 1586.7039.