References and Notes
1a
Somei M.
Yamada F.
Nat. Prod. Prep.
2005,
22:
73
1b
Joule JA. In
Science of Synthesis (Houben-Weyl, Methods of Molecular Transformation)
Vol. 10:
Thoma J.
Georg Thieme Verlag;
Stuttgart:
2000.
p.361-652
1c
Bonjoch J.
Bosch J.
Alkaloids
1996,
48:
75
1d
Sundberg RJ.
Indoles
Academic Press;
London:
1996.
1e
Saxton JE.
The Chemistry of Heterocyclic Compounds
Part IV, Vol. 25:
Academic Press;
New York:
1994.
1f
Döpp H.
Döpp U.
Langer U.
Gerding B. In
Methoden der Organischen Chemie (Houben-Weyl)
Vol. E6b1:
Georg Thieme Verlag;
Stuttgart:
1994.
p.546-848
1g
Döpp H.
Döpp U.
Langer U.
Gerding B.
In Methoden der Organischen Chemie (Houben-Weyl)
Vol. E6b2:
Georg Thieme Verlag;
Stuttgart:
1994.
1h
Chadwick DJ.
Jones RA.
Sundberg RJ.
Comprehensive Heterocyclic Chemistry
Vol. 4:
Pergamon;
Oxford:
1984.
p.155-376
For selected recent reviews on samarium-promoted chemistry:
2a
Edmonds DJ.
Johnston D.
Procter DJ.
Chem. Rev.
2004,
104:
3371
2b
Berndt M.
Gross S.
Hölemann A.
Reissig H.-U.
Synlett
2004,
422
2c
Kagan HB.
Tetrahedron
2003,
59:
10351
2d
Molander GA.
Harris CR.
Tetrahedron
1998,
54:
3321
3a
Gross S.
Reissig H.-U.
Org. Lett.
2003,
5:
4305
3b
Gross S.
Reissig H.-U.
Synlett
2002,
2027
3c
Berndt M.
Reissig H.-U.
Synlett
2001,
1290
3d
Nandanan E.
Dinesh CU.
Reissig H.-U.
Tetrahedron
2000,
56:
4267
3e
Dinesh CU.
Reissig H.-U.
Angew. Chem. Int. Ed.
1999,
38:
789 ; Angew. Chem. 1999, 111, 874
For related aryl carbonyl couplings, see:
4a
Ohno H.
Okumura M.
Maeda SI.
Iwasaki H.
Wakayama R.
Tanaka T.
J. Org. Chem.
2003,
68:
7722
4b
Ohno H.
Wakayama R.
Maeda SI.
Iwasaki H.
Okumura M.
Iwata C.
Mikamiyama H.
Tanaka T.
J. Org. Chem.
2003,
68:
5909
4c
Shiue J.-S.
Lin M.-H.
Fang J.-M.
J. Org. Chem.
1997,
62:
4643
4d
Schmalz H.-G.
Siegel S.
Bats JW.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2383 ; Angew. Chem. 1995, 107, 2597
5 A few inter- and intramolecular indole carbonyl coupling reactions mainly affording rearomatized products have been reported; however, different mechanisms were suggested: Lin S.-C.
Yang F.-D.
Shiue J.-S.
Yang S.-M.
Fang J.-M.
J. Org. Chem.
1998,
63:
2909
The use of HMPA as additive strongly raises the reducing ability of samarium diiodide and is required for many ketyl coupling reactions. See:
6a
Flowers RA.
Xu X.
Timmons C.
Li G.
Eur. J. Org. Chem.
2004,
2988
6b
Prasard E.
Flowers RA.
J. Am. Chem. Soc.
2002,
124:
6895
6c
Inanaga J.
Ishikawa M.
Yamaguchi M.
Chem. Lett.
1987,
1485
7
Typical Procedure, Conversion of 3 into 5a.
Samarium (335 mg, 2.23 mmol) and 1,2-diiodoethane (580 mg, 2.06 mmol) were suspended in freshly distilled anhyd THF (20 mL) under an argon atmosphere and stirred for 2 h at r.t. The reaction flask was then evacuated, purged with argon and HMPA (1.45 mL, 8.25 mmol) was added and stirred for 30 min. To the deep violet solution indole 3 (105 mg, 0.55 mmol), acetone (60 µL, 0.82 mmol) and phenol (155 mg, 1.65 mmol), dissolved in THF (5 mL), were added in one portion. After 30 min the mixture was quenched with 2 N solution of NaOH (15 mL), the organic layer was separated and the aqueous layer was extracted with Et2O. The combined ether extracts were washed with brine, dried (MgSO4), filtrated and evaporated. The resulting crude product was purified by flash chromatography on silica gel using a hexane-EtOAc mixture (8:2) to afford 5a (118 mg, 87%) as colorless oil. IR (KBr): ν = 3480 (OH), 3050, 3030 (ArH), 2975-2815 (CH), 1740 (CO), 1600, 1490 (C=C) cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.18 (s, 3 H, CH3), 1.29 (s, 3 H, CH3), 1.95 (sbr, 1 H, OH), 3.00 (s, 3 H, NCH3), 3.76 (d, J = 6.4 Hz, 1 H, 2-H), 3.77 (s, 3 H, OCH3), 4.08 (d, J = 6.4 Hz, 1 H, 3-H), 6.60 (d, J = 8.0 Hz, 1 H, Ar), 6.74 (dt, J = 1.0, 7.5 Hz, 1 H, Ar), 7.14-7.18, 7.22-7.24 (2 m, 1 H each, Ar). 13C NMR (126 MHz, CDCl3): δ = 25.1, 27.4 (2 q, CH3), 41.1 (q, NCH3), 49.1 (d, C-3), 52.4 (q, OCH3), 73.0 (s, C-1′), 76.7 (d, C-2), 109.9, 118.9, 124.4 (3 d, Ar), 126.4 (s, Ar), 128.8 (d, Ar), 153.9 (s, Ar), 173.0 (s, CO). MS (EI, 80 eV, 40 °C): m/z (%) = 249 (16) [M]+, 234 (4) [M - CH3]+, 190 (96) [M - CO2CH3]+, 158 (51), 131 (100) [M - CO2CH3 - C2H7O]+. Anal. Calcd for C14H19NO3 (249.3): C, 67.45; H, 7.68; N, 5.62. Found: C, 66.74; H, 7.46; N, 5.66. HRMS (EI, 80 eV, 40 °C): m/z calcd for C14H19NO3: 249.13649; found: 249.13634.
8 To the best of our knowledge no related intermolecular additions of samarium ketyls to β-amino-substituted acrylates (the key substructure of 3 and 4) have been reported. For a few intramolecular examples see: MacDonald SJF.
Mills K.
Spooner JE.
Upton RJ.
Dowle MD.
J. Chem. Soc., Perkin Trans. 1
1998,
3931
9
Typical Procedure, Conversion of 3 into 8.
Indole 3 (60 mg, 0.317 mmol) and acetone (36 µL, 0.480 mmol), dissolved in THF (5 mL), were added in one portion to the solution of SmI2 (Sm: 191 mg, 1.27 mmol; 1,2-diiodoethane: 335 mg, 1.19 mmol) and HMPA (830 µL, 4.77 mmol) freshly prepared as above. After 30 min, allyl iodide (0.29 mL, 3.17 mmol) was added and the mixture was quenched with saturated aqueous solution of NaHCO3 (10 mL), the organic layer was separated and the aqueous layer was extracted with Et2O. The combined ether extracts were washed with brine, dried (MgSO4), filtrated and evaporated. The resulting crude product was purified by flash chromatography on silica gel using a hexane-EtOAc mixture (8:2) to provide 8 (67 mg, 82%) as colorless crystals; mp 67 °C (hexane). IR (KBr): ν = 3080, 3055 (ArH), 2980-2800 (CH), 1760 (CO), 1605, 1500 (C=C) cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.31 (s, 3 H, CH3), 1.49 (s, 3 H, CH3), 2.68 (tdd, J = 1.1, 7.2, 14.1 Hz, 1 H, CH2), 2.75 (tdd, J = 1.1, 7.2, 14.1 Hz, 1 H, CH2), 2.91 (s, 3 H, NCH3), 3.75 (s, 1 H, 3a-H), 5.10-5.16, 5.49-5.57 (2 m, 2 H, 1 H, CH2=CH), 6.42 (d, J = 7.6 Hz, 1 H, Ar), 6.71 (dt, J = 1.0, 7.6 Hz, 1 H, Ar), 7.16 (dt, J = 1.3, 7.6 Hz, 1 H, Ar), 7.29 (ddd, J = 0.5, 1.3, 7.6 Hz, 1 H, Ar). 13C NMR (126 MHz, CDCl3): δ = 23.5, 29.4 (2 q, CH3), 35.8 (q, NCH3), 41.8 (t, CH2), 58.9 (s, C-8b), 76.4 (d, C-3a), 87.3 (s, C-3), 106.2, 118.1 (2 d, Ar), 119.6 (t, CH2=), 123.7 (d, Ar), 126.6 (s, Ar), 129.5 (d, Ar), 132.8 (d, CH=), 150.8 (s, Ar), 176.6 (s, CO). MS (EI, 80 eV, 40 °C): m/z (%) = 257 (84) [M]+, 171 (100) [M - C4H6O2]+, 158 (59), 144 (40). Anal. Calcd for C16H19NO2 (257.3): C, 74.68; H, 7.44; N, 5.44. Found: C, 74.52; H, 7.23; N, 5.50.
10
O’Dell DK.
Nicholas KM.
Tetrahedron
2003,
59:
747
11 We thank one of the reviewers of this manuscript for suggesting a speculative but plausible explanation for the observed diastereoselectivity: the approach of the ketyl to
C-2 is more favorable when the very bulky samarium alkoxy group is positioned anti with respect to C-3 bearing the fairly large methoxycarbonyl group; the smaller substituent of the ketyl then points to the indole ring, which is the hydrogen in the case of aldehydes or the phenyl group for acetophenone.
12a
Inanaga J.
Ujikawa O.
Handa Y.
Otsubo K.
Yamaguchi M.
J. Alloys Compd.
1993,
192:
197
12b
Fukuzawa S.-I.
Nakanishi A.
Fujinami T.
Sakai S.
J. Chem. Soc., Perkin Trans. 1
1988,
1669
12c
Otsubo K.
Inanaga J.
Yamaguchi M.
Tetrahedron Lett.
1986,
27:
5763
12d
Fukuzawa S.-I.
Nakanishi A.
Fujinami T.
Sakai S.
J. Chem. Soc., Chem. Commun.
1986,
624