Abstract
The versatility of the ylide (triphenylphosphoranylidene)ketene (Ph3P=C=C=O, 3) in the construction of tetronic and tetramic acids from various carboxylic acid derivatives is demonstrated by new reactions and extensions of known ones. With α-hydroxy or α-amino esters, 3 affords tetronates or tetramates. A two-step synthesis of (-)-epi-blastmycinolactol shows that allyl α-hydroxy esters can be domino Wittig-Claisen reacted to give 3-allyltetronic acids. More extended Wittig-Claisen-Conia cascades can produce 3-alkylidenefuran-2,4-diones, the photooxygenation of which furnishes lactone endoperoxides with antiplasmodial potential. Tetronic acids can be acylated by 3 at C3 to give the corresponding acyl ylides. Their saponification yields the respective 3-acetyl compounds, e.g. the fungal metabolite pesthetoxin. α-Hydroxy acids react with 3 to afford the corresponding 3-phosphoranylidenefuran-2,4-diones. The antibiotic (R)-reutericyclin was built up from benzyl d-leucinate and 3 in four steps by downstream acylation first at C3, then at N1 without racemization.
Key words
domino reactions - phosphorus ylides - tetramic acids - lactones - reutericyclin
References
1
Faulkner DJ.
Nat. Prod. Rep.
1984,
1:
551
2
Pattenden G.
Fortschr. Chem. Org. Naturst.
1978,
35:
133
3
Steglich W.
Pure Appl. Chem.
1989,
61:
281
4
Haynes LJ.
Plimmer JR.
Q. Rev., Chem. Soc.
1960,
14:
292
5
Roggo BE.
Petersen F.
Delmendo R.
Jenny H.-B.
Peter HH.
Roesel J.
J. Antibiot.
1994,
47:
136
6
Hamaguchi T.
Sudo T.
Osada H.
FEBS Lett.
1995,
372:
54
7a
Gänzle MG.
Höltzel A.
Walter J.
Jung G.
Hammes WP.
Appl. Environ. Microbiol.
2000,
66:
4325
7b
Höltzel A.
Gänzle MG.
Nicholson GJ.
Hammes WP.
Jung G.
Angew. Chem. Int. Ed.
2000,
39:
2766
7c
Marquardt U.
Schmid D.
Jung G.
Synlett
2000,
1131
7d
Böhme R.
Jung G.
Breitmaier E.
Helv. Chim. Acta
2005,
88:
2873
8
Ghisalberti EL.
Bioactive Tetramic Acid Metabolites, In Studies in Natural Products Chemistry
Vol. 28:
.
Elsevier;
Amsterdam:
2003.
p.109-163
9
Gossauer A.
Fortschr. Chem. Org. Naturst.
2003,
86:
1
10
Royles BJL.
Chem. Rev.
1995,
95:
1981
11
Davies DH.
Snape EW.
Suter PJ.
King TJ.
Falshaw CP.
J. Chem. Soc., Chem. Commun.
1981,
1073
12
Nowak A.
Steffan B.
Liebigs Ann./Recl.
1997,
9:
1817
13
Harrison P.
Duspara PA.
Jenkins SI.
Kassam SA.
Liscombe DK.
Hughes DW.
J. Chem. Soc., Perkin. Trans. 1
2000,
4390
14
Schipper D.
van der Baan JL.
Bickelhaupt F.
J. Chem. Soc., Perkin. Trans. 1
1979,
2017
15
Chen H.
Harrison PHM.
Org. Lett.
2004,
6:
4033
16
Sims JW.
Fillmore JP.
Warner DD.
Schmidt EW.
Chem. Commun.
2005,
186
17
Bentley R.
Bhate DS.
Keil JG.
J. Biol. Chem.
1962,
237:
859
18
Sekiyama Y.
Fujimoto Y.
Hasumi K.
Endo A.
J. Org. Chem.
2001,
66:
5649
19
Lacey RN.
J. Chem. Soc.
1954,
850
20
Andrews MD.
Brewster AG.
Crapnell KM.
Ibbett AJ.
Jones T.
Moloney MG.
Prout K.
Watkin D.
J. Chem. Soc., Perkin Trans. 1
1998,
223
21
Dixon DJ.
Ley SV.
Longbottom DA.
J. Chem. Soc., Perkin Trans. 1
1999,
2231
22
Ley SV.
Smith SC.
Woodward PR.
Tetrahedron
1992,
48:
1145
23
Jouin P.
Castro B.
Nisato D.
J. Chem. Soc., Perkin Trans. 1
1987,
1177
24
Raillard SP.
Chen W.
Sullivan E.
Bajjalieh W.
Bhandari A.
Baer TA.
J. Comb. Chem.
2002,
4:
470
25
Pirc S.
Bevk D.
Jakse R.
Recnik S.
Goic L.
Stanovnik B.
Svete J.
Synthesis
2005,
2969
26
Hamilakis S.
Kontonassios D.
Sandris C.
J. Heterocycl. Chem.
1996,
33:
825
27
Effenberger F.
Syed J.
Tetrahedron: Asymmetry
1998,
9:
817
28
Jones RCF.
Begley MJ.
Peterson GE.
Sumaria S.
J. Chem. Soc., Perkin Trans. 1
1990,
1959
29
Hori K.
Arai M.
Nomura K.
Yoshii E.
Chem. Pharm. Bull.
1987,
35:
4368
30
Ley SV.
Trudell ML.
Wadsworth DJ.
Tetrahedron
1991,
47:
8285
31
Boeckman RK.
Thomas AJ.
J. Org. Chem.
1982,
47:
2823
32
Schobert R.
Boeckman RK.
Pero JE.
Org. Synth.
Vol. 82:
John Wiley & Sons;
London:
2005.
p.140
33
Schobert R.
Jagusch C.
Melanophy C.
Mullen G.
Org. Biomol. Chem.
2004,
2:
3524
34a
Löffler J.
Schobert R.
J. Chem. Soc., Perkin Trans. 1
1996,
2799
34b
Schobert R.
Löffler J.
Siegfried S.
Targets Heterocycl. Syst.
1999,
3:
245
35
Schobert R.
Jagusch C.
J. Org. Chem.
2005,
70:
6129
36
Schobert R.
Jagusch C.
Tetrahedron
2005,
61:
2301
37a
Schobert R.
Siegfried S.
Gordon GJ.
Nieuwenhuyzen M.
Allenmark S.
Eur. J. Org. Chem.
2001,
1951
37b
Schobert R.
Gordon GJ.
Bieser A.
Milius W.
Eur. J. Org. Chem.
2003,
3637
37c
Schobert R.
Gordon GJ.
Mullen G.
Stehle R.
Tetrahedron Lett.
2004,
45:
1121
38
Nishide K.
Aramata A.
Kamanaka T.
Inoue T.
Node M.
Tetrahedron
1994,
50:
8337
39
Schobert R.
Siegfried S.
Nieuwenhuyzen M.
Milius W.
Hampel F.
J. Chem. Soc., Perkin Trans. 1
2000,
1723
40
Kimura J.
Kouge A.
Nakamura K.
Koshino H.
Uzawa J.
Fujioka S.
Kawano T.
Biosci. Biotechnol. Biochem.
1998,
62:
1624
41a
Gelin S.
Pollet P.
Tetrahedron Lett.
1980,
21:
4491
41b
Mitsos C.
Zografos A.
Igglessi-Markopoulou O.
J. Heterocycl. Chem.
2002,
39:
1201
41c
Skylaris CK.
Igglessi-Markopoulou O.
Markopoulos J.
Chem. Phys.
2003,
293:
355
42a
Fürst T.
Ph.D. Thesis
University of Erlangen;
Germany:
1994.
42b
Bestmann HJ.
Fürst T.
Schier A.
Angew. Chem. Int. Ed.
1993,
32:
1746
42c
Bestmann HJ.
Fürst T.
Schier A.
Angew. Chem. Int. Ed.
1993,
32:
1747
For syntheses of similar systems via other routes, see:
43a
Chopard PA.
Helv. Chim. Acta
1967,
50:
1016
43b
Aitken RA.
Buchanan GM.
Karodia N.
Massil T.
Young RJ.
Tetrahedron Lett.
2001,
42:
141
44a
Dahn H.
Lawendel JS.
Helv. Chim. Acta
1954,
37:
1318
44b
Wasserman HH.
Parr J.
Acc. Chem. Res.
2004,
37:
687
45
Schobert R.
Siegfried S.
Gordon GJ.
Mulholland D.
Nieuwenhuyzen M.
Tetrahedron Lett.
2001,
42:
4561
46
Silva LF.
Synthesis
2001,
671
47
Brocksom TJ.
Coelho F.
Depres J.-P.
Greene AE.
Freire de Lima ME.
Hamelin O.
Hartmann B.
Kanazawa AM.
Wang Y.
J. Am. Chem. Soc.
2002,
124:
15313
48a
McMorris TC.
Anchel M.
J. Am. Chem. Soc.
1965,
87:
1594
48b
McMorris TC.
Kelner MJ.
Wang W.
Yu J.
Estes LA.
Taefle R.
J. Nat. Prod.
1996,
59:
896
49
Yamada K.
Ojika M.
Kigoshi H.
Angew. Chem. Int. Ed.
1998,
37:
1818 ; Angew. Chem. 1998, 110, 1918
50
Schobert R.
Stehle R.
Milius W.
J. Org. Chem.
2003,
68:
9827
51 According to the WHO protocol (see, http://www.who.int/csr/drugresist/malaria/en/markiii.pdf).
52
Marshall E.
Science
2000,
290:
438
53
Posner GH.
Cumming JN.
Woo S.-H.
Ploypradith P.
Xie S.
Shapiro TA.
J. Med. Chem.
1998,
41:
940
54 Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre (CCDC number 616240). Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(1223)336033, e-mail: teched@chemcrys.cam.ac.uk].
55a
Steyn PS.
Wessels PL.
Tetrahedron Lett.
1978,
19:
4707
55b
Nolte MJ.
Steyn PS.
Wessels PL.
J. Chem. Soc., Perkin Trans. 1
1980,
1057
56
Barkley JV.
Markopoulos J.
Igglessi-Markopoulou O.
J. Chem. Soc., Perkin Trans. 2
1994,
1057
57
Lebrun MH.
Nicolas L.
Boutar M.
Gaudemer F.
Ranomenjanahary S.
Gaudemer A.
Phytochemistry
1988,
27:
77
58
Fujita M.
Nakao Y.
Matsunaga S.
Seiki M.
Itoh H.
van Soest RWM.
Fusetani N.
Tetrahedron
2001,
57:
1229
59
Dippenaar A.
Holzapfel CW.
Boeyens JCA.
J. Cryst. Mol. Struct.
1978,
7:
189
60
Imamura N.
Adachi K.
Sano H.
J. Antibiot.
1994,
47:
257
61
Kaufmann GF.
Sartorio R.
Lee S.
Rogers CJ.
Meijler MM.
Moss JA.
Clapham B.
Brogan AP.
Dickerson TJ.
Janda KD.
Proc. Natl. Acad. Sci. U.S.A.
2005,
102:
309
62a
Gänzle MG.
Vogel RF.
Appl. Environ. Microbiol.
2003,
69:
1305
62b
Gänzle MG.
Appl. Microbiol. Biotechnol.
2004,
64:
326
63
Poncet J.
Jouin P.
Castro B.
Nicolas L.
Boutar M.
Gaudemer A.
J. Chem. Soc., Perkin Trans. 1
1990,
611
64
Raddatz P.
Minck K.-O.
Rippmann F.
Schmitges C.-J.
J. Med. Chem.
1994,
37:
486
65
Shiosaki K.
Rapoport H.
J. Org. Chem.
1985,
50:
1229
66
Pons L.
Veldstra H.
Recl. Trav. Chim. Pays-Bas Belg.
1955,
74:
1217
67
Stork G.
Szajewski RP.
J. Am. Chem. Soc.
1974,
96:
5787
68
Galeotti N.
Poncet J.
Chiche L.
Jouin P.
J. Org. Chem.
1993,
58:
5370