Abstract
A new recyclable palladium catalyst was synthesized by a simple procedure from readily available reagents, which is composed of palladium nanoparticles dispersed in an organic polymer. This catalyst is robust, and highly active in many organic transformations including alkene and alkyne hydrogenation, carbon-carbon cross-coupling reactions, and aerobic alcohol oxidation.
Key words
palladium - heterogeneous - hydrogenation - oxidations - cross-coupling - polymer
References
1
Negishi E.-I. In Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E.
Wiley;
New York:
2002.
2a
Lysén M.
Köhler K.
Synthesis
2006,
692
2b
Shokouhimehr M.
Kim J.-H.
Lee Y.-S.
Synlett
2006,
618
2c
He HS.
Yan JJ.
Shen R.
Zhuo S.
Toy PH.
Synlett
2006,
563
2d
Uozumi Y.
Kikuchi M.
Synlett
2005,
1775
2e
Crudden CM.
Sateesh M.
Lewis R.
J. Am. Chem. Soc.
2005,
127:
10045
2f
Wang Y.
Sauer DR.
Org. Lett.
2005,
6:
2793
2g
Motokura K.
Fujita N.
Mori K.
Mizugaki T.
Ebitani K.
Kaneda K.
Tetrahedron Lett.
2005,
46:
5507
2h
Yamada YMA.
Takeda K.
Takahashi H.
Ikegami S.
Tetrahedron
2004,
60:
4097
2i
Ramesh C.
Nakamura R.
Kubota Y.
Miwa M.
Sugi Y.
Synthesis
2003,
501
3a
Koutsopoulos S.
Johannessen T.
Eriksen KM.
Fehrmann R.
J. Catal.
2006,
238:
206
3b
Silvestre-Albero J.
Rupprechter G.
Freund H.
Chem. Commun.
2006,
80
3c
Narayanan R.
El-Sayed MA.
J. Catal.
2005,
234:
348
3d
Son HK.
Jang Y.
Park J.
Na HB.
Park HM.
Yun HJ.
Lee J.
Hyeon T.
J. Am. Chem. Soc.
2004,
126:
5026
3e
Bhanage BM.
Fujita S.
Yoshida T.
Sano Y.
Arai M.
Tetrahedron Lett.
2003,
44:
3505
3f
Kim SW.
Kim M.
Lee WY.
Hyeon T.
J. Am. Chem. Soc.
2002,
124:
5990
3g
Reetz MT.
Westermann E.
Angew. Chem. Int. Ed.
2000,
39:
165
3h
Reetz MT.
Breinbauer R.
Wanninger K.
Tetrahedron Lett.
1996,
37:
4499
4a
Chung M.-K.
Schlaf M.
J. Am. Chem. Soc.
2004,
126:
7386
4b
Roucoux A.
Schulz J.
Patin H.
Chem. Rev.
2002,
102:
3757
4c
Schmid G.
Chi LF.
Adv. Mater.
1998,
10:
515
5a
Hagio H.
Sugiura M.
Kobayashi S.
Org. Lett.
2006,
8:
375
5b
Nishio R.
Sugiura M.
Kobayashi S.
Org. Lett.
2005,
7:
483
5c
Okamoto K.
Akiyama R.
Yoshida H.
Yoshida T.
Kobayashi S.
J. Am. Chem. Soc.
2005,
127:
2125
5d
Okamoto K.
Akiyama R.
Kobayashi S.
Org. Lett.
2004,
6:
1987
5e
Okamoto K.
Akiyama R.
Kobayashi S.
J. Org. Chem.
2004,
69:
2871
5f
Akiyama R.
Kobayashi S.
J. Am. Chem. Soc.
2003,
125:
3412
6a
Kim W.-H.
Park IS.
Park J.
Org. Lett.
2006,
8:
2543
6b
Kwon MS.
Kim N.
Seo SH.
Park IS.
Cheedrala RK.
Park J.
Angew. Chem. Int. Ed.
2005,
44:
6913
6c
Kwon MS.
Kim N.
Park CM.
Lee JS.
Kang KY.
Park J.
Org. Lett.
2005,
7:
1077
6d
Park IS.
Kwon MS.
Kim N.
Lee JS.
Kang KY.
Park J.
Chem. Commun.
2005,
5667
6e
Kim N.
Kwon MS.
Park CM.
Park J.
Tetrahedron Lett.
2004,
45:
7057
7 Pd nanoparticles were generated from Pd(PPh3 )4 in a mixture of butan-1-ol and THF before the polymerization with AIBN.
8a
Chauhan BS.
Rathore J.
Bandoo T.
J. Am. Chem. Soc.
2004,
126:
8493
8b
Pillai UR.
Sahle-Demessie E.
J. Mol. Catal. A: Chem.
2004,
222:
153
8c
Yoon B.
Kim H.
Wai CM.
Chem. Commun.
2003,
1040
8d
Berthold H.
Schotten T.
Honig H.
Synthesis
2002,
1607
9 Ph3 PO was recovered from the filtrate in more than 90% yield.
10 In the cases of butan-2-ol and tetra(ethylene glycol), the resulting catalysts showed 26% of the activity of 1 and 44%, respectively.
11 In the combinations of methacrylic acid and ethylene glycol dimethacrylate, methyl acrylate and ethylene glycol dimethacrylate, and acrylamide and 2,3-dimethylbuta-1,3-diene, the resulting catalysts showed 22% of the activity of 1 , 34%, 3%, respectively.
12 In the filtrate, neither Ph3 P nor Ph3 PO were detected by 1 H NMR spectroscopy, and Pd was not detected by ICP analysis.
13 The filtrate was clear and colorless. Thus, the Pd content in the catalyst was estimated by assuming that all the Pd in the Pd(PPh3 )4 was entrapped in the catalyst.