Subscribe to RSS
DOI: 10.1055/s-2006-950365
An Improved and Benign Synthesis of 9,10-Diarylacridine-1,8-dione and Indenoquinoline Derivatives from 3-Anilino-5,5-dimethylcyclohex-2-enones, Benzaldehydes, and 1,3-Dicarbonyl Compounds in an Ionic Liquid Medium
Publication History
Publication Date:
13 November 2006 (online)

Abstract
Improved and green syntheses of 9,10-diarylacridine-1,8-dione and indenoquinoline derivatives were accomplished by the reactions of 3-anilino-5,5-dimethylcyclohex-2-enones, benzaldehydes, and 1,3-dicarbonyl compounds in the ionic liquid medium [bmim+][BF4 -]. Not only the substituted anilines containing electron-donating groups, but also those with electron-withdrawing groups all gave excellent yields. Furthermore, the interesting unsymmetrical 9,10-diarylacridine-1,8-dione moiety with different groups in the 3- and 6-positions and indenoquinoline derivatives were obtained and are reported here for the first time in the literature. The Knoevenagel condensation and Michael addition intermediates were obtained successfully. A possible mechanism of the reaction is discussed in detail.
Key words
9,10-diarylacridine-1,8-diones - indenoquinolines - ionic liquids - green chemistry
-
1a
Welton T. Chem. Rev. 1999, 99: 2071 -
1b
Wasserscheid P.Keim W. Angew. Chem. Int. Ed. 2000, 39: 3773 -
1c
Sheldon R. Chem. Commun. 2001, 2399 -
1d
Wilkes JS. Green Chem. 2002, 4: 73 -
2a
da Silveira Neto BA.Ebeling G.Goncalves RS.Gozzo FC.Eberlin MN.Dupont J. Synthesis 2004, 1155 -
2b
Yeung KS.Farkas ME.Qiu Z.Yang Z. Tetrahedron Lett. 2002, 43: 5793 -
2c
Fraga-Dubreuil J.Bazureau JP. Tetrahedron 2003, 59: 6121 -
2d
Yadav JS.Reddy BVS.Basak AK.Narsaiah AV. Tetrahedron Lett. 2003, 44: 1047 -
2e
Su C.Chen ZC.Zheng QG. Synthesis 2003, 555 -
2f
Hakkou H.Jacques J.Eynde V.Hamelin J.Bazureau JP. Synthesis 2004, 1793 -
3a
Janis RA.Silver PJ.Triggle DJ. Adv. Drug Res. 1987, 16: 309 -
3b
Shan R.Velazquez C.Knaus EE. J. Med. Chem. 2004, 41: 254 -
3c
Dulhunty AF.Curtis SM.Watson S.Cengia L.Marco G. J. Biol. Chem. 2004, 279: 11853 - 4
Martin N.Quinteiro M.Seoane C.Mora L.Suarez M.Ockoa E.Morales A. J. Heterocycl. Chem. 1995, 51: 235 -
5a
Wang XS.Zhang MM.Zeng ZS.Shi DQ.Tu SJ.Wei XY.Zong ZM. Tetrahedron Lett. 2005, 46: 7169 -
5b
Wang XS.Shi DQ.Zhang YF.Wang SH.Tu SJ. Chin. J. Org. Chem. 2004, 24: 430 - 6
Tu SJ.Miao CB.Gao Y.Feng YJ.Feng JC. Chin. J. Chem. 2002, 20: 703 - 7
Li YL.Zhang MM.Wang XS.Shi DQ.Tu SJ.Wei XY.Zong ZM. J. Chem. Res. 2005, 600 - 8
Mikata Y.Yokoyama M.Mogami K.Kato M.Okura I.Chikira M.Yano S. Inorg. Chim. Acta 1998, 279: 51 - 9
Antonini I.Polucci P.Kelland LR.Menta E.Pescalli N.Martelli S. J. Med. Chem. 1999, 42: 2535 - 10
Gamage SA.Spicer JA.Atwell GJ.Finlay GJ.Baguley BC.Denny WA. J. Med. Chem. 1999, 42: 2383 - 11
Eid NM.Safwat HM.Ramadan MA.Shouman SA.El-Esawy AA. Bull. Fac. Pharm. (Cairo Univ.) 1995, 33: 25 - 12
Gallo S.Atifi S.Mahamoud A.Santelli-Rouvier C.Wolfart K.Molnar J.Barbe J. Eur. J. Med. Chem. 2003, 38: 19 - 13
Srivastava A.Nizamuddin C. Indian J. Heterocycl. Chem. 2004, 13: 261 - 14
Ferencz L.Peter M. Farmacia 2003, 51: 52 - 15
Wang XS.Shi DQ.Wang SH.Tu SJ. Chin. J. Org. Chem. 2003, 23: 1291 - 16
Jin TS.Zhang JS.Guo TT.Wang AQ.Li TS. Synthesis 2004, 2001 -
17a
Chebanov VA.Saraev VE.Kobzar KM.Desenko SM.Orlov VD.Gura EA. Chem. Heterocycl. Compd. 2004, 40: 475 -
17b
El-Sadek MI.Al-Ashmawi MA.El-Bermawy MA.Mohamed AK.Al-Sabbagh OI. Zagazig, J. Pharm. Sci. 1994, 3: 144 - 18
Abdel-Gawad SM.El-Gaby MSA.Heiba HI.Aly HM.Ghorab MM. J. Chin. Chem. Soc. 2005, 52: 1227 - 20
Shi DQ.Zhuang QY.Chen J.Wang XS.Tu SJ.Hu HW. Chin. J. Org. Chem. 2003, 23: 694
References
Crystal structure data for 4r: C29H31NO3, M = 441.55, pale yellow block crystals, 0.50 × 0.47 × 0.26 mm3, triclinic, space group P-1, a = 9.6382 (15), b = 11.5847 (15), c = 12.4722 (11) Å, α = 66.075 (9), β = 70.176 (9), γ = 85.800(13)°, V = 1194.1 (3) Å3, Z = 2, D c = 1.228 g·cm-3, F(000) = 472, µ(Mo Kα) = 0.079 mm-1. Intensity data were collected on a Rigaku Mercury diffractometer with graphite monochromated Mo-Kα radiation (λ = 0.71070 Å) using the ω scan mode with 3.07° < θ < 25.34°; 4332 unique reflections were measured and 3733 reflections with I > 2σ(I) were used in the refinement. The structure was solved by direct methods and expanded using Fourier techniques. The final cycle of full-matrix least-squares technique refined to R = 0.0539 and wR = 0.1204.
21Crystal structure data for 6a: C30H35NO3, M = 457.59, pale yellow block crystals, 0.20 × 0.15 × 0.10 mm3, monoclinic, space group P21/c, a = 10.2337 (13), b = 17.077 (2), c = 15.2788 (19) Å, α = 90.00, β = 106.329 (3), γ = 90.00°, V = 2562.4 (5) Å3, Z = 4, D c = 1.186 g·cm-3, F(000) = 984, µ(Mo Kα) = 0.076 mm-1. Intensity data were collected on a CCD area diffractometer with graphite monochromated Mo-Kα radiation (λ = 0.71073Å) using the φ and ω scan modes with 2.07° < θ < 26.00°; 4985 unique reflections were measured and 1823 reflections with I > 2σ(I) were used in the refinement. The structure was solved by direct methods and expanded using Fourier techniques. The final cycle of full-matrix least-squares technique refined to R = 0.0617 and wR = 0.1201.
22Crystal structure data for 8b: C34H33FN2O3, M = 536.62, red block crystals, 0.40 × 0.21 × 0.20 mm3, monoclinic, space group P21/n, a = 113.0147 (18), b = 9.5006 (12), c = 22.985 (3) Å, α = 90.00, β = 102.850 (3), γ = 90.00°, V = 2770.9 (6) Å3, Z = 4, D c = 1.286 g·cm-3, F(000) = 1136, µ(Mo Kα) = 0.087 mm-1. Intensity data were collected on a Rigaku Mercury diffractometer with graphite monochromated Mo-Kα radiation (λ = 0.71070Å) using the φ and ω scan modes with 3.03° < θ < 25.34°; 3830 unique reflections were measured and 1823 reflections with I > 2σ(I) were used in the refinement. The structure was solved by direct methods and expanded using Fourier techniques. The final cycle of full-matrix least-squares technique refined to R = 0.0789 and wR = 0.1544.