Synthesis 2007(1): 118-130  
DOI: 10.1055/s-2006-950378
PAPER
© Georg Thieme Verlag Stuttgart · New York

Tandem Claisen Condensation/Transesterification between Arylacetate Enolates and Arylmethylene-Substituted 2,2-Dimethyl-1,3-dioxolan-4-ones: An Improved Synthesis of Z-Configured Pulvinones

Natasza Kaczybura, Reinhard Brückner*
Institut für Organische Chemie and Biochemie, Albert-Ludwigs-Universität, Albertstr. 21, 79104 Freiburg, Germany
Fax: +49(761)2036100; e-Mail: reinhard.brueckner@organik.chemie.uni-freiburg.de;
Further Information

Publication History

Received 12 June 2006
Publication Date:
23 November 2006 (online)

Abstract

Horner-Wadsworth-Emmons (HWE) alkenations of aromatic aldehydes with the novel phosphonate 24b led to E-configured arylmethylene-substituted 2,2-dimethyl-1,3-dioxolan-4-ones 25a-f (79-88% yield). The latter condensed with the lithium enolates of methyl arylacetates lithio-20b-d to give, after acid treatment and crystallization, isomerically pure (Z)-pulvinones 8d-s in 75-91% yield. We also showed that Horner-Wadsworth-Emmons reactions between phosphonate 24b and aliphatic aldehydes lead to E-configured alkylmethylene-substituted 2,2-dimethyl-1,3-dioxolan-4-ones 25g-i (82-96% yield).

    References

  • Reviews:
  • 1a Rao YS. Chem. Rev.  1976,  76:  625 
  • 1b Pattenden G. Prog. Chem. Nat. Prod.  1978,  35:  133 
  • Reviews:
  • 2a Knight DW. Contemp. Org. Synth.  1994,  1:  287 
  • 2b Negishi E.-I. Kotora M. Tetrahedron  1997,  53:  6707 
  • 2c Brückner R. Chem. Commun.  2001,  141 
  • 2d Brückner R. Curr. Org. Chem.  2001,  5:  679 
  • 2e Rossi R. Bellina F. In Targets in Heterocyclic Systems: Chemistry and Properties   Vol. 5:  Attanasi OA. Spinelli D. Società Chimica Italiana; Rome: 2002.  p.169-198  
  • Review:
  • 3a Tejedor C. Garcia-Tellado F. Org. Prep. Proced. Int.  2004,  36:  33 
  • For recent syntheses of tetronic acids using Dieckmann condensations, see:
  • 3b Sodeoka M. Sampe R. Kojima S. Baba Y. Usui T. Ueda K. Osada H. J. Med. Chem.  2001,  44:  3216 
  • 3c Mitsos CA. Zografos AL. Igglessi-Markopoulou O. J. Org. Chem.  2000,  65:  5852 
  • For a recent synthesis of tetronic acids by cyclization of γ-bromo-β-oxocarboxylic acids, see:
  • 3d Tabake K. Mase N. Nomoto M. Daicho M. Tauchi T. Yoda H. J. Chem. Soc., Perkin Trans. 1  2002,  500 
  • For a recent synthesis of tetronic acids by acid-treatment of the 2:1-adducts formed from aldehydes and methyl propiolate, see:
  • 3e Aragón DT. López GV. Garcia-Tellado F. Marrero-Tellado JJ. de Armas P. Terrero D. J. Org. Chem.  2003,  68:  3363 
  • For a recent synthesis of tetronic acids by lactonization of γ-hydroxy-β-oxo esters resulting from the [2,3]-Wittig rearrangement of γ-(allyloxy)-β-oxo esters, see:
  • 3f Pévet I. Meyer C. Cossy J. Tetrahedron Lett.  2001,  42:  5215 
  • For a recent synthesis of tetronic acids by the oxidation of β-hydroxy-γ-butyrolactones, see:
  • 3g Kapferer T. Brückner R. Herzig A. König WA. Chem. Eur. J.  2005,  11:  2154 
  • Review:
  • 4a Brückner R. Curr. Org. Chem.  2001,  5:  679, Section 7 
  • Recent synthesis of pulvinones using methodology from ref. 9:
  • 4b Klostermeyer D. Knops L. Sindlinger T. Polborn K. Steglich W. Eur. J. Org. Chem.  2000,  4:  603 
  • Reviews:
  • 5a Brückner R. Curr. Org. Chem.  2001,  5:  679, Sections 8-9  
  • 5b Pattenden G. Prog. Chem. Nat. Prod.  1978,  35:  133, Sections III.1, III.3, and IV.2 
  • 5c Gill M. Steglich W. Prog. Chem. Nat. Prod.  1987,  51:  1 , Section 2.1.3
  • Syntheses of pulvinic acids by Suzuki couplings with tetronic esters containing a triflate substituent at Cβ:
  • 5d Ahmed Z. Langer P. Tetrahedron  2005,  61:  2055 
  • 5e Ahmed Z. Langer P. J. Org. Chem.  2004,  64:  3753 ; and literature cited therein
  • For more applications of Langer’s methodology, see:
  • 5f Heurtaux B. Lion C. Le Gall T. Mioskowski C. J. Org. Chem.  2005,  70:  1474 
  • 5g Desage-El Mur M. Nowaczyk S. Le Gall T. Mioskowski C. Amekraz B. Moulin C. Angew. Chem. Int. Ed.  2003,  42:  1289 ; Angew. Chem., 2003, 115, 1327
  • 6 Sheley CF. Shechter H. J. Org. Chem.  1970,  35:  2367 
  • 7 Claisen L. Ewan T. Justus Liebigs Ann. Chem.  1895,  284:  245 
  • 8 Huang RL. J. Chem. Soc.  1957,  4089 
  • 9 Campbell AC. Maidment MS. Pick JH. Stevenson DFM. J. Chem. Soc., Perkin Trans. 1  1985,  1567 
  • 11 Gill M. Kiefel MJ. Lally DA. Ten A. Aust. J. Chem.  1990,  43:  1497 
  • 15 Knight DW. Pattenden G. J. Chem. Soc., Perkin Trans. 1  1979,  70 
  • 17 Antane S. Caufield CE. Hu W. Keeney D. Labthavikul P. Morris K. Naughton SM. Petersen PJ. Rasmussen BA. Singh G. Yang Y. Bioorg. Med. Chem. Lett.  2006,  16:  176 
  • 18 Reffstrup J. Boll PM. Phytochemistry  1979,  18:  325 
  • 19 Caufield CE, Antane SA, Morris KM, Naughton SM, Quagliato DA, Andrae PM, Enos A, and Chiarello JF. inventors; WO  2005/019196. 
  • 20 Ramage R. Griffiths GJ. Shutt FE. Sweeney JNA. J. Chem. Soc., Perkin Trans. 1  1984,  1531 
  • 21 Ramage R. Griffiths GJ. Shutt FE. Sweeney JNA. J. Chem. Soc., Perkin Trans. 1  1984,  1539 
  • 23a Burk MJ. Kalberg CS. Pizzano A. J. Am. Chem. Soc.  1998,  120:  4345 
  • Analogous addition of dialkyl phosphites/dialkyl H-phosphonates to butyl glyoxylate:
  • 23b Pudovik AN. Gur’yanova IV. J. Gen. Chem. USSR (Engl. Transl.)  1967,  37:  1566 ; Zh. Obshch. Khim., 1967, 37, 1649
  • Analogous addition of diethyl phosphite/diethyl H-phosphonate to ethyl glyoxylate, liberated from its hemi(ethyl acetal):
  • 23c Schmidt U. Langner J. Kirschbaum B. Braun C. Synthesis  1994,  1138 
  • 24Method is given in:
  • 24 Gerlach U. Hünig S. Angew. Chem., Int. Ed. Engl.  1987,  26:  1283 ; Angew. Chem. 1987, 99, 1323
  • 25 Still WC. Kahn M. Mitra A. J. Org. Chem.  1978,  43:  2923 
  • 26 Blanchette MA. Choy W. Davis JT. Essenfeld AP. Masamune S. Roush WR. Tetrahedron Lett.  1984,  25:  2183 
  • 27 Diaryl phosphonates (ArO)2P(=O)CH2CO2Et undergoing Z-selective Horner-Wadsworth-Emmons reactions with α-chiral aldehydes in the presence of NaI, DBU, and HMPA: Ando K. Oishi T. Hirama M. Hiroali O. Ibuka T. J. Org. Chem.  2000,  65:  4745 ; in order to minimize health hazards, we replaced HMPA by DMPU
  • 28 Still WC. Gennari C. Tetrahedron Lett.  1983,  24:  4405 
  • 29 Kokin K. Iitake K.-I. Takaguchi Y. Aoyama H. Hayashi S. Motoyoshiya J. Phosphorus, Sulfur Silicon Relat. Elem.  1998,  133:  21 
  • 30 Methyl 2-(tert-butyldimethylsiloxy)-2-(dimethoxyphosphoryl)acetate, upon deprotonation with LDA in pure THF, and 4-methoxy-2-(methoxymethoxy)benzaldehyde condense with seemingly perfect Z/E selectivity: Boehlow TR. Harburn JJ. Spilling CD. J. Org. Chem.  2001,  66:  3111 
  • 31a Nagaoka H. Kishi Y. Tetrahedron  1981,  37:  3873 
  • 31b Related finding: Boschelli D. Takemasa T. Nishitani Y. Masamune S. Tetrahedron Lett.  1985,  26:  5239 
  • 32 Vogeli U. von Philipsborn W. Org. Magn. Reson.  1975,  7:  617 
  • 34 Earlier description of pulvinone (Z)-8f: Ojima N. Takenaka S. Seto S. Phytochemistry  1973,  12:  2527 
  • 35 Pulvinone (Z)-8j was synthesized in a mixture which also contained the isomeric pulvinone (Z)-5-(3,4-dimethoxy­-benzylidene)-4-hydroxy-3-(4-methoxyphenyl)furan-2(5H)-one: Edwards RL. Gill M. J. Chem. Soc., Perkin Trans. 1  1973,  1921 
10

Type 7 compounds were obtained by the addition of substituted benzylmagnesium chlorides to the C≡N bond of the O-trimethylsilylated cyanohydrin of arylacetaldehydes, followed by hydrolysis. [11]

12

Method is given in ref. 9.

13

Ester 9 was prepared by the alkylation of potassium phenylacetate with ethyl 2-bromo-3-phenylpropionate. [9]

14

Tetronic ester 10a was obtained by the base-mediated condensation of (4-methoxyphenyl)acetonitrile with diethyl oxalate followed by O-methylation of the enol and anhydride formation: Knight, D. W.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1979, 62. Hydride reduction provided a separable mixture of 10a and hydroxy-10a which was once more reduced giving more 10a.

16

Tetronic ester 10b was obtained differently than tetronic ester 10a, namely by the Dieckmann condensation of (ethoxycarbonyl)methyl phenylacetate followed by O-methylation. [9]

22

Each of Ramage et al.’s three pulvinones emerged from a slightly different protocol: [21] (Z)-21a: Scheme [3] , steps (e1) and (e2) (there appeared to be no addition of acid other than in one of the two recrystallization procedures); (Z)-21b was obtained from PhCHO and lithio-20a in 71% yield analogously as described in (e1); step (e2) was replaced by no evaporation of THF, adding H2O, refluxing (30 min), evaporating the solvents, adding Et2O-H2O (1:1), keeping the aqueous phase, adding HCl (to pH 1), isolating the resulting solid; (Z)-8b was obtained from PhCHO and the lithium enolate of methyl phenylacetate in 94% yield analogously as described in (e1); step (e2) was replaced by evaporating THF, adding Et2O-H2O (1:1), keeping the aqueous phase, adding HCl (to pH 1), isolating the resulting solid. We followed a blend of the three procedures, replacing Ramage’s step (e2) by no evaporation of THF (i.e., like towards (Z)-21b), no refluxing with H2O (i.e., unlike towards (Z)-21b), adding Et2O-H2O (1:1), etc.

33

In a related condensation using lithium diisopropylamide/ester 26/dioxolanone 25c, we ascertained that the yield of pulvinone 28 decreased from 60% to 40% upon changing the reactant ratio from 2.5:2.5:1 to 2.5:1.25:1 (Scheme 4). The analogous condensation using lithium diisopropylamide/carboxylic acid 27/dioxolanone 25c (2.2:1.1:1 ratio of the reactants) did not give pulvinone 28 under the conditions otherwise identical to those of Table 5 (Kaczybura, N. Dissertation; Universität Freiburg: Germany, 2005).

Scheme 4

36

We could not extend our approach to a synthesis of pulvinic acids 32 and 33. While dioxolanone 31 was accessible by a Horner-Wadsworth-Emmons reaction between phosphonate 24b and α-oxo ester 29 (79% yield), it did not react with the ester enolate 30 by Claisen condensation/transesterification (Scheme 5).

Scheme 5 Reagents and conditions: a) 24b (1.0 equiv), LDA (1.7 equiv), THF, -78 °C, 30 min; 29, 2.5 h; 79% (60:40 mixture of unassigned isomers); (b1) 30 (2.5 equiv), THF, -78 °C, 2 h, to r.t., 0-2 h; (b2) evaporation of THF; addition of Et2O-H2O (1:1), 60 °C, 1 h.