Abstract
Two different strategies are presented to synthesize mollugin, based upon a close investigation of possible natural precursors. The best total synthesis of mollugin, a natural product isolated from rubiaceous herbs, is achieved in an overall yield of 61% starting from 1,4-dihydroxynaphthalene-2-carboxylic acid. The key reaction is the prenylation and spontaneous pyran ring formation. Subsequent oxidation of the intermediate 3,4-dihydromollugin with DDQ afforded mollugin.
Key words
quinones - natural products - oxidations
References and Notes
1
Itokawa H.
Mihara K.
Takeya K.
Chem. Pharm. Bull.
1983,
31:
2353
2a
Ho L.-K.
Don M.-J.
Chen H.-C.
Yeh S.-F.
Chen J.-M.
J. Nat. Prod.
1996,
59:
330
2b
Itokawa H.
Takeya K.
Mori N.
Sonobe T.
Mihashi S.
Hamanaka T.
Chem. Pharm. Bull.
1986,
34:
3762
3
Kawasaki Y.
Goda Y.
Yoshishira K.
Chem. Pharm. Bull.
1992,
40:
1504
4
Chung M.-L.
Jou S.-J.
Cheng T.-H.
Lin C.-N.
J. Nat. Prod.
1994,
57:
313
5a
Gonzalez AG.
Barroso JT.
Cardona RJ.
Medina JM.
Rodriguez L.
An. Quim.
1977,
73:
538
5b
Itokawa H.
Qiao YF.
Takeya K.
Phytochemistry
1989,
28:
3465
5c
Itokawa H.
Qiao YF.
Takeya K.
Phytochemistry
1991,
30:
637
5d
Hua HM.
Wang SX.
Wu LJ.
Li X.
Zhu TR.
Acta Pharm. Sinica
1992,
27:
279
5e
Kuo S.-C.
Chen P.-R.
Lee S.-W.
Chen Z.-T.
J. Chin. Chem. Soc. (Taipei)
1995,
42:
869
5f
Inoue K.
Shiobara Y.
Naynshiro H.
Inouye H.
Wilson G.
Zenk MH.
Phytochemistry
1984,
23:
307
6a
Wanyoike GN.
Chhabra SC.
Lang’at-Thoruwa CC.
Omar SA.
J. Ethnopharmacol.
2004,
90:
129
6b
Cos P.
Hermans N.
De Bruyne T.
Apers S.
Sindambiwe JP.
Vanden Berghe D.
Pieters L.
Vlietinck AJ.
J. Ethnopharmacol.
2002,
79:
155
6c
Van Puyvelde L.
El Hady S.
De Kimpe N.
Feneau-Dupont J.
Declercq JP.
J. Nat. Prod.
1998,
61:
1020
6d
Hari L.
De Buyck L.
De Pooter HL.
Phytochemistry
1991,
30:
172
6e
Chabra SC.
Mahunnah RLA.
Mshiu EN.
J. Ethnopharmacol.
1991,
33:
143
7
Schildknecht H.
Straub F.
Liebigs Ann. Chem.
1976,
1307
8
Heide L.
Leistner E.
J. Chem. Soc., Chem. Commun.
1981,
334
9
Ho L.-K.
Yu H.-J.
Ho C.-T.
Don M.-J.
J. Chin. Chem. Soc.
2001,
48:
77
10
Claessens S.
Kesteleyn B.
Nguyen VT.
De Kimpe N.
Tetrahedron
2006,
62:
8419
11
Giles RGF.
Green IR.
Hugo VI.
Mitchell PRK.
Yorke SC.
J. Chem. Soc., Perkin Trans. 1
1983,
2309
12a
Khanna RN.
Sharma PK.
Thomson RH.
J. Chem. Soc., Perkin Trans. 1
1987,
1821
12b
Nicolaou KC.
Sasmal PK.
Xu H.
J. Am. Chem. Soc.
2004,
126:
5493
13
Wipf P.
Weiner WS.
J. Org. Chem.
1999,
64:
5321
14
Lumb JP.
Trauner D.
Org. Lett.
2005,
7:
5865
15
Naruta Y.
Uno H.
Maruyama K.
J. Chem. Soc., Chem. Commun.
1981,
1277
16
Naruta Y.
J. Org. Chem.
1980,
45:
4097
17
Jacobsen N.
Torsell K.
Acta Chem. Scand.
1973,
27:
3211
18
Schildknecht H.
Straub F.
Liebigs Ann. Chem.
1976,
1295
19 3-Bromomollugin 7: IR (KBr): 1650 cm-1 (C=O). 1H NMR (CDCl3, 300 MHz): δ = 1.59 (6 H, s, 2 × CH3), 4.04 (3 H, s, OCH3), 7.54 (1 H, ddd, J = 8.2, 6.9, 1.4 Hz, CH-8 or CH-9), 7.56 (1 H, s, CH), 7.63 (1 H, ddd, J = 8.2, 6.9, 1.4 Hz, CH-8 or CH-9), 8.13 (1 H, ddd, J = 8.2, 1.4, 0.8 Hz, CH-7), 8.37 (1 H, ddd, J = 8.2, 1.4, 0.8 Hz, CH-10), 12.27 (1 H, s, OH). 13C NMR (CDCl3, 75 MHz): δ = 25.82 (2 × CH3), 52.62 (OMe), 78.73 (=CBr), 101.24 (Cquat), 113.15 (Cquat), 121.85 (CH-7), 123.80 (Cquat), 124.29 (CH-10), 125.25 (Cquat), 125.31 (=CH), 126.73 (CH-8 or CH-9), 128.81 (Cquat), 129.77 (CH-8 or CH-9), 140.32 (Cquat), 157.27 (Cquat), 172.20 (C=O). MS (ES+): m/z (%) = 362/364 [M]+(100).