Abstract
CuCl ligated with β-diketones were found to be good catalysts for the amination of aryl bromides. Crucial is the concentration of the substrates: at 5 M the rate and selectivity improves substantially. In addition, K2 CO3 can be used as base instead of expensive Cs2 CO3 . Primary and secondary amines, heterocycles and anilines could be arylated in good yields.
Key words
amination - copper - halide - diketones - concentration
References and Notes
For some recent applications in the pharmaceutical field, see:
1a
Gosh A.
Sieser JE.
Caron S.
Couturier M.
Dupont-Gaudet K.
Girardin M.
J. Org. Chem.
2006,
71:
1258
1b
Zhao M.
Yin J.
Huffmann MA.
Tetrahedron
2006,
62:
1110
1c
Damon DB.
Dugger RW.
Hubbs SE.
Scott JM.
Scott RW.
Org. Process Res. Dev.
2006,
10:
472
2
Kisselev R.
Thelakkat M.
Chem. Commun.
2002,
1530
3
Wu J.
Watson MD.
Müllen K.
Angew. Chem. Int. Ed.
2003,
42:
5329
4a
Koeckelberghs G.
De Cremer L.
Vanormelingen W.
Dehaen W.
Verbiest T.
Persoons A.
Samyn C.
Tetrahedron
2005,
61:
687
4b
Patil NM.
Kelkar AA.
Chaudhari RV.
J. Mol. Catal. A: Chem.
2004,
223:
45
4c
Patil NM.
Kelkar AA.
Chaudhari RV.
Tetrahedron Lett.
2002,
43:
7143
5
Suo Z.
Drobizhev M.
Spangler CW.
Christensson N.
Rebane A.
Org. Lett.
2005,
7:
4807
6a
Ullmann F.
Ber. Dtsch. Chem. Ges.
1903,
36:
2382
6b Review: Lindley J.
Tetrahedron
1984,
40:
1433
7a
Buchwald SL.
Mauger C.
Mignani G.
Scholz U.
Adv. Synth. Catal.
2006,
348:
23
7b
Schlummer B.
Scholz U.
Adv. Synth. Catal.
2004,
346:
1599
7c
Lei J.
Buchwald SL. In
Metal-Catalyzed Cross-Coupling Reactions
de Meijere A.
Diederich F.
Wiley-VCH;
Weinheim:
2004.
p.699
7d
Hartwig JF. In
Handbook of Organopalladium Chemistry in Organic Synthesis
Negishi E.
John Wiley and Sons, Inc.;
New York:
2002.
p.1051
8a
Goldberg I.
Ber. Dtsch. Chem. Ges.
1906,
39:
1691
8b For a recent catalyst, see: Klapars A.
Huang X.
Buchwald SE.
J. Am. Chem. Soc.
2002,
124:
7421
9a
Ma D.
Zhang Y.
Yao J.
Wu S.
Tao F.
J. Am. Chem. Soc.
1998,
120:
12459
9b
Ma D.
Xia C.
Org. Lett.
2001,
3:
2583
9c
Zhang H.
Cai Q.
Ma D.
J. Org. Chem.
2005,
70:
5164
10
Goodbrand HB.
Hu N.-X.
J. Org. Chem.
1999,
64:
670
11
Lang F.
Zewge D.
Houpis IN.
Volante RP.
Tetrahedron Lett.
2001,
42:
3251
12a
Gujadhur R.
Venkataraman D.
Kintigh JT.
Tetrahedron Lett.
2001,
4791
12b
Gujadhur RK.
Bates CG.
Venkataraman D.
Org. Lett.
2001,
3:
4315
13a
Klapars A.
Antilla JC.
Huang X.
Buchwald SL.
J. Am. Chem. Soc.
2001,
123:
7727
13b
Kwong FY.
Klapars A.
Buchwald SL.
Org. Lett.
2002,
4:
581
13c
Antilla JC.
Klapars A.
Buchwald SL.
J. Am. Chem. Soc.
2002,
124:
11684
13d
Kwong FY.
Buchwald SL.
Org. Lett.
2003,
5:
793
14a
Christau H.-J.
Cellier PP.
Spindler J.-F.
Taillefer M.
Eur. J. Org.
2004,
695
14b
Christau H.-J.
Cellier PP.
Spindler J.-F.
Taillefer M.
Chem. Eur. J.
2004,
10:
5607
15a
Ley SV.
Thomas AW.
Angew. Chem. Int. Ed.
2003,
42:
5400
15b
Kunz K.
Scholz U.
Ganzer D.
Synlett
2003,
2428
16a
Kelkar AA.
Patil NM.
Chaudhari RV.
Tetrahedron Lett.
2002,
43:
7143
16b
Lu Z.
Twieg RJ.
Huang SD.
Tetrahedron Lett.
2003,
44:
6289
16c
Okano K.
Tokuyama H.
Fukuyama T.
Org. Lett.
2003,
5:
4987
16d
Haider J.
Kunz K.
Scholz U.
Adv. Synth. Catal.
2004,
346:
717
16e
Gajare AS.
Toyota K.
Yoshifuji M.
Ozawa F.
Chem. Commun.
2004,
1994
16f
Lu Z.
Twieg RJ.
Tetrahedron
2005,
61:
903
16g
Wang P.-S.
Liang C.-K.
Leung M.
Tetrahedron
2005,
61:
2931
16h
Kuil M.
Bekedam EK.
Visser GM.
van den Hoogenband A.
Terpstra JW.
Kamer PCJ.
van Leeuwen PWNM.
van Strijdonck GPF.
Tetrahedron Lett.
2005,
46:
2405
16i
Lu Z.
Twieg RJ.
Tetrahedron Lett.
2005,
46:
2997
16j
Xu L.
Zhu D.
Wu F.
Wang R.
Wan B.
Tetrahedron
2005,
61:
6553
16k
Choudary BM.
Sridhar C.
Kantam ML.
Venkanna GT.
Sreedhar B.
J. Am. Chem. Soc.
2005,
127:
9948
16l
Rao H.
Fu H.
Jiang Y.
Zhao Y.
J. Org. Chem.
2005,
70:
8107
16m
Movassaghi M.
Ondrus AE.
J. Org. Chem.
2005,
70:
8638
16n
Yang T.
Lin C.
Fu H.
Jiang Y.
Zhao Y.
Org. Lett.
2005,
7:
4781
16o
Pu Y.-M.
Ku Y.-Y.
Grieme T.
Henry R.
Bhatia AV.
Tetrahedron Lett.
2006,
47:
149
17 Lambers MH, de Lange B, de Vries AHM, de Vries JG, and Sereinig N. inventors; WO 2006009431 to DSM IP ASSETS B.V..
18
Buck E.
Song ZJ.
Tschaen D.
Dormer PG.
Volante RP.
Reider PJ.
Org. Lett.
2002,
4:
1623
19
Kaga H.
Miura M.
Orito K.
Synthesis
1989,
864
20 We presume that either the secondary or the tertiary amine is the reductant.
21
Shi L.
Wang M.
Fan C.
Zhang F.
Tu Y.
Org. Lett.
2003,
5:
351
22
Beller M.
Breindl C.
Riermeier TH.
Tillack A.
J. Org. Chem.
2001,
66:
1403
23
Experimental Procedure.
A 50-mL thermostated reactor fitted with overhead stirrer (H.E.L auto-MATE) was charged with K2 CO3 (7.26 g, 52.5 mmol), CuCl (0.25 g, 2.5 mmol) and 10 mL of NMP. The reactor was flushed with N2 and stirring was started at 500 rpm. After addition of 50 mmol of aryl bromide, 60 mmol of amine and 6.25 mmol of diketone ligand the mixture was heated to 130 °C under N2 and stirred for 16 h (or longer for reluctant substrates). In screening experiments a sample of 100-200 mg was taken after this period, which was diluted with 10 mL of EtOAc and filtered over a syringe filter. Analysis was by GC [HP5 column (30 m, id 0.32 mm, 0.25 µm film), 70-270 °C min in 10 min, 2 min at 270 °C] using dihexyl ether as internal standard. For preparative runs the reaction mixture was partitioned between CH2 Cl2 and 1 N aq NaHCO3 . The organic phase was washed several times with 1 N aq NaHCO3 to remove NMP, dried and the solvent was removed on the rotavap. The residue was purified by flash chromatography on silica (heptane-EtOAc 15:5).
24
Shafir A.
Buchwald SL.
J. Am. Chem. Soc.
2006,
128:
8742