References and Notes
1a
Kane BE.
Svensson B.
Ferguson DM.
AAPS Journal
2006,
8:
E126
1b
Glennon RA.
Ismaiel AM.
Smith JD.
Yousif M.
El-Ashmawy M.
Herndon JL.
Fischer JB.
Howie KJB.
Server AC.
J. Med. Chem.
1991,
34:
1855
2
Horwell DC.
Naylor D.
Willems HMG.
Bioorg. Med. Chem. Lett.
1997,
7:
31
3
Thomas C.
Ohnmacht U.
Niger M.
Gmeiner P.
Bioorg. Med. Chem. Lett.
1998,
8:
2885
4a
Defauw JM.
Murphy MM.
Jagdmann GE.
Hu H.
Lampe JW.
Hollinshead SP.
Mitchell TJ.
Crane HM.
Heerding JM.
Mendoza JS.
Davis JE.
Darges JW.
Hubbard FR.
Hall SE.
J. Med. Chem.
1996,
39:
5215
4b
Jagdmann GE.
Defauw JM.
Lampe JW.
Darges JW.
Kalter K.
Bioorg. Med. Chem. Lett.
1996,
6:
1759
5a
Negishi E.
Holmes SJ.
Tour JM.
Miller JA.
J. Am. Chem. Soc.
1985,
107:
2568
5b
Nugent WA.
Taber DF.
J. Am. Chem. Soc.
1989,
111:
6435
6
Dixon S.
Fillery SM.
Kasatkin A.
Norton D.
Thomas E.
Whitby RJ.
Tetrahedron
2004,
60:
1401 ; and references therein
Pyrrolidines:
7a
Rousset CJ.
Swanson DR.
Lamaty F.
Negishi E.
Tetrahedron Lett.
1989,
30:
5105
7b
Uesaka N.
Saitoh F.
Mori M.
Shibasaki M.
Okamura K.
Date T.
J. Org. Chem.
1994,
59:
5633
7c
Saitoh F.
Mori M.
Okamura K.
Date T.
Tetrahedron
1995,
51:
4439
7d
Mori M.
Kuroda S.
Zhang CS.
Sato Y.
J. Org. Chem.
1997,
62:
3263
7e
Campbell AD.
Raynham TM.
Taylor RJK.
J. Chem. Soc., Perkin Trans. 1
2000,
3194
Piperidines:
8a
Kemp MI.
Whitby RJ.
Coote SJ.
Synthesis
1998,
557
8b
Kemp MI.
Whitby RJ.
Coote SJ.
Synthesis
1998,
552
8c
Mori M.
Imai AE.
Uesaka N.
Heterocycles
1995,
40:
551
8d
Bird AJ.
Taylor RJK.
Wei X.
Synlett
1995,
1237
8e Azepanes: Macfarlane, D. P. S.; Norton, D.; Whitby, R. J.; Tupper, D. Synlett, submitted.
9
Zhou Z.-L.
Keana JFW.
J. Org. Chem.
1999,
64:
3763
10
Brown RCD.
Fisher M.
Chem. Commun.
1999,
1547
11a
Bolton GL.
Tetrahedron Lett.
1996,
37:
3433
11b
Bolton GL.
Hodges JC.
Rubin JR.
Tetrahedron
1997,
53:
6611
11c
Spitzer JL.
Kurth MJ.
Schore NE.
Tetrahedron
1997,
53:
6791
12
Brown RCD.
Castro JL.
Moriggi JD.
Tetrahedron Lett.
2000,
41:
3681
13
Jones G.
Org. React.
1967,
15:
204
14
Akamatsu H.
Kusumoto S.
Fukase K.
Tetrahedron Lett.
2002,
43:
8867
15a
Yoon NM.
Brown HC.
J. Am. Chem. Soc.
1968,
90:
2927
15b
Matecka D.
Rothman RB.
Radesca L.
de Costa BR.
Dersch CM.
Partilla JS.
Pert A.
Glowa JR.
Wojnicki FHE.
Rice KC.
J. Med. Chem.
1996,
39:
4704
15c
Shah JH.
Kline RH.
Geter-Douglass B.
Izenwasser S.
Witkin JM.
Newman AH.
J. Med. Chem.
1996,
39:
3423
16a
Negishi E.
Holmes SJ.
Tour JM.
Miller JA.
Cederbaum FE.
Swanson DR.
Takahashi T.
J. Am. Chem. Soc.
1989,
111:
3336
16b
Negishi E.
Cederbaum FE.
Takahashi T.
Tetrahedron Lett.
1986,
27:
2929
17
Synthesis of 1-Benzyl-3-methyl-4-(4-methyl-benzyl)pyrrolidine.
Cp2ZrCl2 (0.35 g, 1.2 mmol) in THF (5 mL) was cooled to -78 °C before BuLi (0.96 mL of 2.5 M solution in hexane, 2.4 mmol) was added slowly. The reaction was stirred for 20 min at -78 °C before N-allylbenzyl[(E)-3-(4-methyl-phenyl)allyl]amine (0.277 g, 1 mmol) in THF (5 mL) was added slowly. The reaction was warmed to r.t. and stirred for 24 h. MeOH (5 mL) and sat. aq NaHCO3 solution (5 mL) were added and mixture stirred overnight. Extractive work-up and chromatography (SiO2, 1% Et3N, in 40:60 PE) gave the title pyrrolidine as a 5:1 mixture of trans- to cis-dia-stereoisomers as a colourless oil (226 mg, 81%). 1H NMR (300 MHz, CDCl3): δ = 7.25-7.10 (5 H, m), 7.00-6.94 (4 H, m), 3.57-3.50 (1 H, m), 3.48-3.39 (1 H, m), 2.94 (1 Hcis, m), 2.75-2.61 (2 H, m), 2.57-2.25 (3 H, m), 2.22 (3 H, s), 2.13-2.04 (1 H, m), 2.02-1.96 (1 Hcis, m), 1.93-1.76 (2 Htrans, m), 0.91 (3 Hcis, d, J = 7.3 Hz), 0.85 (3 Htrans, d, J = 6.5 Hz) ppm. 13C NMR (75 MHz, CDCl3): δ (trans-isomer): 139.59 (C), 138.42 (C), 135.33 (C), 129.09 (CH), 128.87 (CH), 128.82 (CH), 128.31 (CH), 126.90 (CH), 62.36 (CH2), 60.87 (CH2), 60.30 (CH2), 48.00 (CH), 40.49 (CH2), 38.96 (CH), 21.16 (CH3), 19.41 (CH3) ppm; δ (cis-isomer): 139.70 (C), 138.65 (C), 135.26 (C), 129.14 (CH), 128.87 (CH), 128.65 (CH), 128.32 (CH), 126.90 (CH), 62.62 (CH2), 61.12 (CH2), 59.84 (CH2), 41.95 (CH), 35.35 (CH2), 34.50 (CH), 21.16 (CH3), 15.17 (CH3) ppm. IR: 3025 (w), 2952 (m), 2915 (m), 2782 (m), 1514 (m), 1453 (s), 1376 (m), 1028 (m) cm-1. LRMS (EI): m/z (%) = 279 (59) [M], 187 (87), 173 (76), 158 (83). HRMS (ES+): m/z calcd for C20H26N+ [M + H+] 280.2060; found: 280.2057.
18a
Whitesell JK.
Minton MA.
Stereochemical Analysis of Alicyclic Compounds by C-13 NMR Spectroscopy
Chapman and Hall;
London, New York:
1987.
p.37-55
18b
Ando T.
Kusa K.
Uchiyama M.
Yoshida S.
Takahashi N.
Agric. Biol. Chem.
1983,
47:
2849
19 A carbamate linker could not be used as Cp2Zr(1-butene) caused cleavage of the allyl-nitrogen bond rather than cyclisation.
20
Norton D.
PhD Thesis
University of Southampton;
UK:
2004.
21
Sasakura K.
Adachi M.
Sugasawa T.
Synth. Commun.
1988,
18:
265
22
Vojkovsky T.
Peptide Res.
1995,
8:
236
23
Solid-Phase Route to 14b.
Merrifield resin (18.75 g, 1.6 mmol/g, 30 mmol), allylamine (600 mmol, 45 mL) in THF (120 mL) were heated at 75 °C overnight. The resin was filtered and washed with dry distilled THF (10 × 60 mL) then dried in a vacuum oven at 40 °C for 5 d to give resin-bound N-allylamine 10 as a white solid (19.5 g). IR: 3082 (w), 3025 (w), 2919 (m), 2848 (w), 1601 (w), 1510 (m), 1493 (m), 1452 (s) cm-1. 4-Methyl cinnamic acid (3.24 g, 20 mmol) and HOBT (2.70 g, 20 mmol) were stirred for 15 min in DMF (30 mL). The reaction flask was cooled to 0 °C before DIC (3.1 mL, 20 mmol) was added. The flask was warmed to r.t. before stirring for a further 15 min. The reaction mixture was then poured into a plastic filter vessel containing 10 (3.25 g,
5 mmol), suspended in DMF (30 mL). The reaction was agitated for 1 week, filtered and washed with hot DMF, MeOH, CH2Cl2 and Et2O. The resin was dried using a vacuum oven at 40 °C for 2 d to give the pale yellow resin-bound (E)-N-allyl-3-(4-methylphenyl)acrylamide (11b, 3.38 g). IR: 3024 (w), 2924 (m), 1650 (s), 1605 (s), 1512 (m), 1452 (s), 1411 (s), 1200 (s) cm-1. In a dry peptide tube, 11b (0.338 g, 0.5 mmol) was suspended in THF (40 mL). Then, AlH3 (1.2 mL of a 0.55 M solution in THF, 0.65 mmol, 1.3 equiv) was added under an argon atmosphere. The reaction was shaken overnight, filtered and the resin washed under argon with dry THF and Et2O, and dried under vacuum for 2 h to afford resin-bound N-allyl-N-[(E)-3-(4-methyl-phenyl)prop-2-enyl]amine (12b). IR: 3025 (w), 2921 (w), 1644 (w), 1602 (w), 1493 (m), 1452 (m), 1067 (m) cm-1. Cp2ZrCl2 (0.438 g, 1.5 mmol, 3 equiv) in THF (10 mL) was cooled to -78 °C before BuLi (1.2 mL of 2.5 M solution, 3 mmol) was added. The reaction was stirred for 30 min at -78 °C before being added via cannular to resin 12b (0.5 mmol) suspended in THF (40 mL). The reaction was warmed to r.t. and shaken for 20 h. The resulting burgundy-coloured resin mixture was quenched with MeOH (5 mL) and sat. NaHCO3 (5 mL), shaken overnight, filtered and washed with hot H2O, MeOH, CH2Cl2 and Et2O before drying under vacuum for 2 h to afford resin-bound 3-methyl-4-(4-methylbenzyl)pyrrolidine (13b). IR: 2923 (w), 1567 (m), 1493 (w), 1451 (w), 1367 (m), 1020 (w) cm-1. Resin 13b (0.5 mmol) was suspended in dry CH2Cl2 (10 mL), ethyl chloroformate (0.15 mL, 1.5 mmol) added and the mixture boiled under reflux for 2 h. The resin was filtered, washed with CH2Cl2 (3 × 50 mL) and the washings were con-centrated in vacuo to give ethyl 3-methyl-4-(4-methyl-benzyl)pyrrolidine-1-carboxylate (14b) as a colourless oil (74 mg, 57% based on resin used) in >90% purity based on a comparison with the NMR spectra of the pure carbamate prepared by the solution-phase cleavage of 6b.
[24]
24
Solution-Phase Route to 14b.
N-Benzyl-3-methyl-4-(4-methylbenzyl)pyrrolidine (6b, 0.14 g, 0.5 mmol) and ethylchloroformate (0.15 mL, 1.5 mmol) in CH2Cl2 (10 mL) were heated at 65 °C for 3 h. The CH2Cl2 was removed in vacuo and the resulting brown oil purified by column chromatography (SiO2, Et2O-PE, 1:1). Kugelrohr distillation (0.1 mmHg, 220 °C) gave 14b as a colourless oil (94 mg, 72%). 1H NMR (400 MHz, CDCl3): δ = 7.18-7.06 (4 H, m), 4.21-4.10 (2 H, m), 3.77-3.62 (1 Htrans, m), 3.49 (1 H, m), 3.31-2.86 (4 H + 1Hcis, m), 2.81-2.71 (2 Hcis, m), 2.58-2.41 (2 Htrans, m), 2.38 (3 H, s), 2.36-2.29 (2 Hcis, m), 2.10-1.88 (2 Htrans, m), 1.33-1.23 (3 H, m), 1.11 (3 Htrans, d, J = 7 Hz), 1.07 (3 Hcis, d, J = 7 Hz) ppm. 13C NMR (100 MHz, CDCl3; where signals are separated by ‘/’ they correspond to rotomers due to the carbamate group): δ (trans-isomer) = 155.23 (C), 137.13 / 136.99 (C), 135.80 (C), 129.29 (CH), 128.74 / 128.71 (CH), 60.95 (CH2), 53.45 / 53.21 (CH2), 51.73 / 51.35 (CH2), 47.70 / 46.99 (CH), 38.66 / 37.98 (CH2), 37.71 / 37.61 (CH), 21.13 (CH3), 16.46 (CH3), 15.02 (CH3) ppm; δ (cis-isomer; derived from comparison of 5:1 and 2:1 trans:cis isomer mixed from solution- and solid-phase routes, respectively) = 155.58 (C), 137.52 / 137.47 (C), 135.72 / 135.69 (C), 129.33 (CH), 128.65 (CH), 60.98 (CH2), 53.35 (CH2), 49.44 / 49.09 (CH2), 43.89 / 43.24 (CH), 35.45 / 34.74 (CH), 33.88 / 33.84 (CH2), 21.13 CH3), 15.02 (CH3), 13.71 / 13.64 (CH3) ppm. IR: 2931 (w), 2870 (w), 1695 (s), 1515 (w), 1420 (s), 1349 (m) cm-1. LRMS (EI): m/z (%) = 261 (33) [M+], 216 (8), 156 (79), 105 (100). Anal. Calcd (%) for C16H23NO2: C, 73.53; H, 8.87; N, 5.36. Found: C, 73.29; H, 8.78; N, 5.40.
25a
Bishop DC.
Selway RA.
Webb NE.
Winder CV.
Welford M.
Cavalla JF.
J. Med. Chem.
1965,
1:
316
25b
Lyles-Eggleston M.
Altundas R.
Xia J.
Sikazwe DMN.
Fan P.
Yang Q.
Li S.
Zhang W.
Zhu X.
Schmidt AW.
Vanase-Frawley M.
Shrihkande A.
Villalobos A.
Borne RF.
Ablordeppey SY.
J. Med. Chem.
2004,
47:
497
25c
Sonesson C.
Wikstrom H.
Smith MW.
Svensson K.
Carlsson A.
Waters N.
Bioorg. Med. Chem. Lett.
1997,
7:
241
26
Leander DJ.
Cantrell BE.
Reel JK.
Snoddy J.
Laurane MG.
Johnson BG.
Mitch CH.
Zimmerman DM.
J. Med. Chem.
1993,
36:
2833