References and Notes
For some leading references, see:
1a
Reck F.
Zhou F.
Girardot M.
Kern G.
Eyermann CJ.
Hales NJ.
Ramsay RR.
Gravestock MB.
J. Med. Chem.
2005,
48:
499
1b
Barbachyn MR.
Ford CW.
Angew. Chem. Int. Ed.
2003,
42:
2010 ; Angew. Chem. 2003, 115, 2056
1c
Kakeya H.
Morishita M.
Koshino H.
Morita T.
Kobayashi K.
Osada H.
J. Org. Chem.
1999,
64:
1052
2a
Ager DJ.
Prakash I.
Schaad DR.
Chem. Rev.
1996,
96:
835
2b
Gage JR.
Evans DA.
Org. Synth.
1990,
68:
83 ; Org. Synth., Coll. Vol. VIII; Wiley: New York, 1993, 339
2c
Evans DA.
Johnson JS. In
Comprehensive Asymmetric Catalysis
Vol. III:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin, Heidelberg:
1999.
p.1177
3
Shibata I.
Kato H.
Kanazawa N.
Yasuda M.
Baba A.
J. Am. Chem. Soc.
2004,
126:
466
4a
Shachat N.
Bagnell J.
J. Org. Chem.
1963,
28:
991
4b
Stoffel PJ.
Speziale AJ.
J. Org. Chem.
1963,
28:
2814
5
Müller TE.
Beller M.
Chem. Rev.
1998,
98:
675
6a
Kimura M.
Kure S.
Yoshida Z.
Tanaka S.
Fugami K.
Tamaru Y.
Tetrahedron Lett.
1990,
31:
4887
6b
Tamaru Y.
Kimura M.
Tanaka S.
Kure S.
Yoshida Z.
Bull. Chem. Soc. Jpn.
1994,
67:
2383
6c
Ohe K.
Matsuda H.
Ishihara T.
Chatani N.
Kawasaki Y.
Murai S.
J. Org. Chem.
1991,
56:
2267
6d For a related Pd-catalyzed transformation, see: Lei A.
Lu X.
Org. Lett.
2000,
2:
2699
For recent reviews on Au-catalysis, see:
7a
Hashmi ASK.
Gold Bull.
2004,
37:
51
7b
Hashmi ASK.
Angew. Chem. Int. Ed.
2004,
44:
6990 ; Angew. Chem. 2005, 117, 7150
7c
Hoffmann-Röder A.
Krause N.
Org. Biomol. Chem.
2005,
3:
387
8a
Mizushima E.
Hayashi T.
Tanaka M.
Org. Lett.
2003,
5:
3349
8b
Alfonsi M.
Arcadi A.
Aschi M.
Bianchi G.
Marinelli F.
J. Org. Chem.
2005,
70:
2265
8c
Gorin DJ.
Davis NR.
Toste D.
J. Am. Chem. Soc.
2005,
127:
11260
9
Braunstein P.
Lehner H.
Matt D.
Inorg. Synth.
1990,
27:
218
For the Au(III)-catalyzed intramolecular hydroamination of simple aminoalkynes, see:
10a
Fukuda Y.
Utimoto K.
Nozaki H.
Heterocycles
1987,
25:
297
10b
Fukuda Y.
Utimoto K.
Synthesis
1991,
975
10c For the first use of AuCl3 in homogeneous catalysis, see: Hashmi ASK.
Schwarz L.
Choi J.-H.
Frost TM.
Angew. Chem. Int. Ed.
2000,
39:
2285 ; Angew. Chem. 2000, 112, 2382
11 Crystal data for compound 9a: colorless crystals (from cyclohexane); mp 87-88 °C; C16H19NO4S, FW = 321.10, triclinic, space group P-1; a = 7.2854 (2) Å, b = 8.7222 (3) Å, c = 12.7763 (4) Å; α = 96.866 (2)°, β = 100.075 (2)°, γ = 99.598 (2)°; V = 778.85 (4) Å3; Z = 2; d
calc = 1.370 g/cm3; R = 0.0391, R
w = 0.0837 for 2517 reflections having I > 2σ(I). Further crystallographic data have been deposited at the Cambridge Crystallographic Data Centre. Copies of the data (CCDC 613241) can be obtained free of charge from CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (1223)336033; e-mail: deposit@ccdc.cam.ac.uk].
12 Such a mechanism was previously proposed for a related gold-catalyzed transformation (oxazole synthesis): Hashmi ASK.
Weyrauch JP.
Frey W.
Bats JW.
Org. Lett.
2004,
6:
4391
13
General Procedure for the AuCl-Catalyzed Cyclization of O
-Propargyl Carbamates: To a solution of an O-propargyl carbamate (6 or 8a-8f; 0.5 mmol) and a base co-catalyst (0.025 mol, 5 mol%) in solvent (2 mL) was added AuCl (0.025 mol, 5 mol%). The mixture was stirred at r.t. or 60 °C for the time specified in Tables
[2]
and
[3]
. Conversion was monitored by TLC and/or GLC analyses. The reaction mixture was filtered through a small pad of Celite® (elution with CH2Cl2). Removal of the solvent under reduced pressure and purification of the residue by flash chromatog-raphy on SiO2 (cyclohexane-EtOAc, 3:1) afforded the products (7 or 9) as colorless oils or solids.
4-Methylene-3-(toluene-4-sulfonyl)-1-oxa-3-azaspiro[4.5]decan-2-one (
9a): 1H NMR (300 MHz, CDCl3): δ = 1.34-1.74 (m, 10 H), 2.41 (s, 3 H), 4.39 (d, 2
J = 3 Hz, 1 H, C=CH), 5.46 (d, 2
J = 3 Hz, 1 H, C=CH), 7.31 (d, 3
J = 8.3 Hz, 2 H), 7.89 (d, 3
J = 8.3 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 21.36 (t), 21.65 (q), 24.28 (t), 36.64 (t), 84.83 (s), 90.14 (t), 127.92 (d), 129.75 (d), 134.31 (s), 144.96 (s), 145.94 (s), 150.26 (s). IR (ATR): 1782 (ss, C=O), 1660 (s, C=C) cm-1. MS (DIP-EI, 70 eV): m/z (%) = 321 [M+], 166 (14), 155 (24), 105 (12), 94 (23), 91 (100), 81 (16), 65 (33). HRMS (EI): m/z [M]+ calcd for 12C16H19
14N16O4
32S: 321.1035; found: 321.104.
(
Z
)-4-Ethylidene-3-tosyloxazolidin-2-one (
9b): 1H NMR (250 MHz, CDCl3): δ = 1.85 (td, 5
J = 1.8 Hz, 3
J = 7.36 Hz, 3 H, CH3), 2.42 (s, 3 H), 4.62 (app pent, 2 H,), 5.24 (tq, 4
J = 1.8 Hz, 3
J = 7.4 Hz, 1 H), 7.33 (d, 3
J = 8 Hz, 2 H), 7.92 (d, 3
J = 8 Hz, 2 H). Characteristic signals of the minor isomer iso-9b: 1H NMR (250 MHz, CDCl3): δ = 4.56 (dt, 5
J
t = 1 Hz, 3
J
d = 6 Hz, 2 H), 5.43 (tq, 4
J
q = 1 Hz, 3
J
t = 5 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 14.63 (q), 21.75 (q), 70.14 (t), 112.43 (q), 128.28 (d), 129.87 (d), 135.4 (s), 138.84 (s), 145.77 (s), 153.54 (s, C=O). IR (ATR): 2923 (w, C=CCH3), 1782 (ss, C=O) cm-1. MS (DIP-EI, 70 eV): m/z (%) = 267 [M+], 155 (34), 112 (11), 95 (32), 91 (100), 65 (23), 57 (44). HRMS (EI): m/z [M]+ calcd for 12C12H13
14N16O4
32S: 267.0565; found: 267.056.
(
Z
)-4-Benzylidene-3-(toluene-4-sulfonyl)oxazolidin-2-one (
9c): 1H NMR (250 MHz, CDCl3): δ = 2.42 (s, 3 H), 4.82 (d, 4
J = 2 Hz, 2 H), 6.15 (t, 4
J = 2 Hz, 1 H), 7.25-7.31 (m, 7 H), 7.68 (d, 3
J = 8.5 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 21.71 (q), 70.28 (t), 115.87 (d), 127.13 (s), 127.79 (d), 128.48 (d), 128.54 (d), 129.57 (d), 134.49 (s), 134.80 (s), 145.76 (s), 153.90 (s, C=O). IR (ATR): 3058 (w, C=CR), 1788 (ss, C=O) cm-1. MS (DIP-EI, 70 eV): m/z (%) = 329 [M+], 174 (12), 155 (33), 130 (68), 103 (25), 91 (100), 77 (26), 65 (31), 51 (9). HRMS (EI): m/z [M]+ calcd for 12C17H15
14N16O4
32S: 321.0721; found: 321.072.
4-Methylene-3-phenyloxazolidin-2-one (
9d): 1H NMR (250 MHz, CDCl3): δ = 4.12 (d, 2
J = 2.5 Hz, 1 H, C=CH), 4.21 (d, 2
J = 2.5 Hz, 1 H, C=CH), 5.01 (t, 2
J = 2 Hz, 2 H), 7.30-7.46 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 67.10 (t), 82.00 (t), 126.91 (d), 128.94 (d), 129.15 (d), 133.55 (s), 141.72 (s), 155.97 (s, C=O). IR (ATR): 1757 (ss, C=O), 1680 (s, C=CH) cm-1. MS (DIP-EI, 70 eV): m/z (%) = 175 [M+], 130 (100), 103 (56), 91 (8), 77 (68), 63 (10), 51 (46). HRMS (EI): m/z [M]+ calcd for 12C10H9
14N16O2: 175.0633; found: 175.063.
(
Z
)-4-Ethylidene-3-phenyloxazolidin-2-one (
9e): 1H NMR (250 MHz, CDCl3): δ = 1.06 (td, 5
J = 2.3 Hz, 3
J = 7.3 Hz, 3 H), 4.47 (tq, 4
J = 2.3 Hz, 3
J = 7.3 Hz, 1 H), 4.91 (m, 2 H), 7.30-7.43 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 10.43 (q), 66.06 (t), 93.17 (d), 127.09 (d), 127.17 (d), 128.21 (d), 128.59 (d), 129.55 (d), 129.87 (d), 130.59 (s), 135.16 (s). IR (ATR): 1771 (ss, C=O), 1699 (s, C=CH) cm-1. MS (DIP-EI, 70 eV): m/z (%) = 207 [M+], 189 (32), 149 (33), 132 (36), 119 (100), 104 (27), 91 (29), 84 (74), 77 (69), 57 (77), 49 (94). HRMS (EI): m/z [M]+ calcd for 12C11H11
14N16O2: 189.079; found: 189.079.
(
Z
)-4-Benzylidene-3-phenyloxazolidin-2-one (
9f): 1H NMR (300 MHz, CDCl3): δ = 5.10 (d, 4
J = 2.1 Hz, 2 H), 5.67 (s, 1 H), 6.63 (d, J = 1.7 Hz, 2 H), 6.81-6.90 (m, 3 H), 6.98-7.06 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 68.03 (t), 99.89 (t), 125.88 (d), 126.96 (d), 128.12 (d), 128.16 (d), 128.68 (d), 129.74 (d), 132.27 (s), 132.83 (s), 134.60 (s), 156.95 (s, C=O). IR (ATR): 3053 (w, C=CR), 1769 (ss, C=O) cm-1. MS (DIP-EI, 70 eV): m/z (%) = 251 [M+], 206 (23), 104 (100), 89 (9), 77 (32), 63 (8), 51 (22). HRMS (EI): m/z [M]+ calcd for 12C16H13
14N16O2: 251.0946; found: 251.094.
14 During the preparation of this manuscript, a method for the gold-catalyzed synthesis of (isomeric) 3-alkylidene-2-oxazolidinones was reported, which nicely complements the work described here: Robles-Machin R.
Adrio J.
Carretero JC.
J. Org. Chem.
2006,
71:
5023