Aktuelle Neurologie 2007; 34(3): 151-161
DOI: 10.1055/s-2006-951977
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Das Parkinson-Syndrom und seine genetischen Ursachen - eine Standortbestimmung

Parkinson's Disease and its Genetic Origins - Current StatusK.  Lohmann-Hedrich1 [1] , N.  Brüggemann1 [1] , J.  Hagenah1 , C.  Klein1
  • 1Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
Further Information

Publication History

Publication Date:
04 April 2007 (online)

Zusammenfassung

Intensive Forschung innerhalb des letzten Jahrzehnts hat die Rolle genetischer Veränderungen bei der Entstehung des Parkinsonsyndroms (PS) demonstriert. Bisher wurden Mutationen in sechs verschiedenen Genen identifiziert, die eindeutig die Erkrankung verursachen können und entweder autosomal-dominant oder autosomal-rezessiv innerhalb von betroffenen Familien vererbt werden. Zu den autosomal-rezessiven Formen gehören Mutationen in den Genen Parkin, PINK1, DJ-1 und ATP13A2, wobei Mutationen im Parkin-Gen am häufigsten zu finden sind. Diese Formen sind in der Regel durch einen frühen Erkrankungsbeginn (vor dem 40. Lebensjahr) gekennzeichnet. Mit einem autosomal-dominanten Vererbungsmuster wurden Mutationen im α-Synuklein- und im LRRK2-Gen assoziiert. Weitere ursächliche Gene wurden lokalisiert und die genetischen Formen werden entsprechend der Reihenfolge ihrer Entdeckung klassifiziert, zurzeit PARK1 bis PARK13. Zusätzlich gibt es Hinweise auf weitere mutierte Gene, denen bisher kein „PARK”-Akronym zugeordnet wurde. Die Identifizierung von genetischen PS-Formen hat zu einem besseren Verständnis der Pathophysiologie der Erkrankung beigetragen und häufige Varianten (Polymorphismen) in einigen dieser Gene scheinen auch eine Rolle bei der idiopathischen Erkrankung zu spielen. Sowohl klinisch als auch pathologisch können die genetischen Formen oft nicht vom typischen idiopathischen PS unterschieden werden, und Vorhersagen über den individuellen Krankheitsverlauf sind nicht möglich. Derzeit wird nur bei etwa 20 % der Patienten mit einem frühen Erkrankungsbeginn und weniger als 3 % der spät erkrankenden Personen eine monogene Ursache identifiziert, sodass unter Berücksichtigung des hohen technischen und finanziellen Aufwandes eine Untersuchung nur in ausgewählten Fällen erfolgen sollte. Eine vorherige und begleitende genetische Beratung ist dabei unerlässlich.

Abstract

Intense research efforts over the past decade have demonstrated the role of genetics in the aetiology of parkinsonism. To date, mutations in six different genes have been identified that can clearly cause the condition and that are inherited in an autosomal dominant or recessive fashion within affected families. Among the recessive forms are mutations in the Parkin, PINK1, DJ-1, and ATP13A2 genes with mutations in the Parkin gene being the most frequent. These forms are usually characterised by an early age of onset (before the age of 40 years). Mutations in the α-Synuclein and in the LRRK2 gene are associated with an autosomal dominant pattern of inheritance. Additional causative genes have been localised and the genetic forms have been classified in chronological order of their first description (PARK1 - 13). There is further evidence for additional mutated genes that have not yet been assigned a „PARK” acronym. The identification of genetic forms of parkinsonism has led to a better understanding of the pathophysiology of the disorder, and frequent variants (polymorphisms) in some of these genes appear to play a role also in the idiopathic form of the disease. Both clinically and pathologically, the genetic forms cannot be distinguished from typical idiopathic Parkinson's disease, and the individual disease course cannot be predicted. At present, a monogenic cause can be identified in about 20 % of the patients with an early age of onset and in less than 3 % of patients with a late onset of the disorder. Taking into account the considerable amount of time and effort and the high costs involved, genetic testing is recommended only in selected cases and should be accompanied by careful counselling.

Literatur

  • 1 Klein C. Movement disorders: Classifications.  J Inherit Metab Dis. 2005;  28 425-439
  • 2 Klein C, Schlossmacher M. The genetics of parkinson disease.  Nature Clinical Practice Neurology. 2006;  2 136-146
  • 3 Klein C, Pramstaller P P, Kis B. et al . Parkin deletions in a family with adult-onset, tremor-dominant parkinsonism: Expanding the phenotype.  Ann Neurol. 2000;  48 65-71
  • 4 Pramstaller P P, Schlossmacher M G, Jacques T S. et al . Lewy body parkinson's disease in a large pedigree with 77 parkin mutation carriers.  Ann Neurol. 2005;  58 411-422
  • 5 Hedrich K, Kann M, Lanthaler A J. et al . The importance of gene dosage studies: Mutational analysis of the parkin gene in early-onset parkinsonism.  Hum Mol Genet. 2001;  10 1649-1656
  • 6 Kitada T, Asakawa S, Hattori N. et al . Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism.  Nature. 1998;  392 605-608
  • 7 Lucking C B, Durr A, Bonifati V. et al . Association between early-onset parkinson's disease and mutations in the parkin gene. French parkinson's disease genetics study group.  N Engl J Med. 2000;  342 1560-1567
  • 8 Hedrich K, Marder K, Harris J. et al . Evaluation of 50 probands with early-onset parkinson's disease for parkin mutations.  Neurology. 2002;  58 1239-1246
  • 9 Kubo S I, Kitami T, Noda S. et al . Parkin is associated with cellular vesicles.  J Neurochem. 2001;  78 42-54
  • 10 Fallon L, Moreau F, Croft B G. et al . Parkin and cask/lin-2 associate via a pdz-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain.  J Biol Chem. 2002;  277 486-491
  • 11 Schlossmacher M G, Frosch M P, Gai W P. et al . Parkin localizes to the lewy bodies of parkinson disease and dementia with lewy bodies.  Am J Pathol. 2002;  160 1655-1667
  • 12 Shimura H, Hattori N, Kubo S. et al . Familial parkinson disease gene product, parkin, is a ubiquitin-protein ligase.  Nat Genet. 2000;  25 302-305
  • 13 Chung K K, Zhang Y, Lim K L. et al . Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: Implications for lewy-body formation in parkinson disease.  Nat Med. 2001;  7 1144-1150
  • 14 Shimura H, Schlossmacher M G, Hattori N. et al . Ubiquitination of a new form of alpha-synuclein by parkin from human brain: Implications for parkinson's disease.  Science. 2001;  293 263-269
  • 15 Imai Y, Soda M, Inoue H. et al . An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of parkin.  Cell. 2001;  105 891-902
  • 16 Corti O, Hampe C, Koutnikova H. et al . The p38 subunit of the aminoacyl-trna synthetase complex is a parkin substrate: Linking protein biosynthesis and neurodegeneration.  Hum Mol Genet. 2003;  12 1427-1437
  • 17 Ko H S, Kim S W, Sriram S R. et al . Identification of far upstream element-binding protein-1 as an authentic parkin substrate.  J Biol Chem. 2006;  281 16193-16196
  • 18 Huynh D P, Scoles D R, Nguyen D, Pulst S M. The autosomal recessive juvenile parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin xi.  Hum Mol Genet. 2003;  12 2587-2597
  • 19 Cookson M R. The biochemistry of parkinson's disease.  Annu Rev Biochem. 2005;  74 29-52
  • 20 Hampe C, Ardila-Osorio H, Fournier M. et al . Biochemical analysis of parkinson's disease-causing variants of parkin, an e3 ubiquitin-protein ligase with monoubiquitylation capacity.  Hum Mol Genet. 2006;  15 2059-2075
  • 21 Sriram S R, Li X, Ko H S. et al . Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin.  Hum Mol Genet. 2005;  14 2571-2586
  • 22 Goldberg M S, Fleming S M, Palacino J J. et al . Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons.  J Biol Chem. 2003;  278 43628-43635
  • 23 Palacino J J, Sagi D, Goldberg M S. et al . Mitochondrial dysfunction and oxidative damage in parkin-deficient mice.  J Biol Chem. 2004;  279 18614-18622
  • 24 Greene J C, Whitworth A J, Andrews L A. et al . Genetic and genomic studies of drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis.  Hum Mol Genet. 2005;  14 799-811
  • 25 Feany M B, Bender W W. A drosophila model of parkinson's disease.  Nature. 2000;  404 394-398
  • 26 Vercammen L, Perren A Van der, Vaudano E. et al . Parkin protects against neurotoxicity in the 6-hydroxydopamine rat model for parkinson's disease.  Mol Ther. 2006;  14 716-723
  • 27 Yang Y X, Muqit M M, Latchman D S. Induction of parkin expression in the presence of oxidative stress.  Eur J Neurosci. 2006;  24 1366-1372
  • 28 Hedrich K, Hagenah J, Djarmati A. et al . Clinical spectrum of homozygous and heterozygous pink1 mutations in a large german family with parkinson disease: Role of a single hit?.  Arch Neurol. 2006;  63 833-838
  • 29 Hiller A, Hagenah J M, Djarmati A. et al . Phenotypic spectrum of pink1-associated parkinsonism in 15 mutation carriers from 1 family.  Mov Disord. 2007;  22 145-147
  • 30 Valente E M, Abou-Sleiman P M, Caputo V. et al . Hereditary early-onset parkinson's disease caused by mutations in pink1.  Science. 2004;  304 1158-1160
  • 31 Valente E M, Salvi S, Ialongo T. et al . Pink1 mutations are associated with sporadic early-onset parkinsonism.  Ann Neurol. 2004;  56 336-341
  • 32 Healy D G, Abou-Sleiman P M, Gibson J M. et al . Pink1 (park6) associated parkinson disease in ireland.  Neurology. 2004;  63 1486-1488
  • 33 Rogaeva E, Johnson J, Lang A E. et al . Analysis of the pink1 gene in a large cohort of cases with parkinson disease.  Arch Neurol. 2004;  61 1898-1904
  • 34 Bonifati V, Rohe C F, Breedveld G J. et al . Early-onset parkinsonism associated with pink1 mutations: Frequency, genotypes, and phenotypes.  Neurology. 2005;  65 87-95
  • 35 Abou-Sleiman P M, Muqit M M, McDonald N Q. et al . A heterozygous effect for pink1 mutations in parkinson's disease?.  Ann Neurol. 2006;  60 414-419
  • 36 Klein C, Djarmati A, Hedrich K. et al . Pink1, parkin, and dj-1 mutations in italian patients with early-onset parkinsonism.  Eur J Hum Genet. 2005;  13 1086-1093
  • 37 Sim C H, Lio D S, Mok S S. et al . C-terminal truncation and parkinson's disease-associated mutations down-regulate the protein serine/threonine kinase activity of pten-induced kinase-1.  Hum Mol Genet. 2006;  15 3251-3262
  • 38 Silvestri L, Caputo V, Bellacchio E. et al . Mitochondrial import and enzymatic activity of pink1 mutants associated to recessive parkinsonism.  Hum Mol Genet. 2005;  14 3477-3492
  • 39 Hoepken H H, Gispert S, Morales B. et al . Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in park6.  Neurobiol Dis. 2007;  25 401-411
  • 40 Park J, Lee S B, Lee S. et al . Mitochondrial dysfunction in drosophila pink1 mutants is complemented by parkin.  Nature. 2006;  441 1157-1161
  • 41 Clark I E, Dodson M W, Jiang C. et al . Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.  Nature. 2006;  441 1162-1166
  • 42 Wang D, Qian L, Xiong H. et al . Antioxidants protect pink1-dependent dopaminergic neurons in drosophila.  Proc Natl Acad Sci USA. 2006;  103 13520-13525
  • 43 Hedrich K, Winkler S, Hagenah J. et al . Recurrent lrrk2 (park8) mutations in early-onset parkinson's disease.  Mov Disord. 2006;  21 1506-1510
  • 44 Paisan-Ruiz C, Jain S, Evans E W. et al . Cloning of the gene containing mutations that cause park8-linked parkinson's disease.  Neuron. 2004;  44 595-600
  • 45 Zimprich A, Biskup S, Leitner P. et al . Mutations in lrrk2 cause autosomal-dominant parkinsonism with pleomorphic pathology.  Neuron. 2004;  44 601-607
  • 46 Mata I F, Kachergus J M, Taylor J P. et al . Lrrk2 pathogenic substitutions in parkinson's disease.  Neurogenetics. 2005;  6 171-177
  • 47 Farrer M, Stone J, Mata I F. et al . Lrrk2 mutations in parkinson disease.  Neurology. 2005;  65 738-740
  • 48 Funayama M, Hasegawa K, Ohta E. et al . An lrrk2 mutation as a cause for the parkinsonism in the original park8 family.  Ann Neurol. 2005;  57 918-921
  • 49 Zabetian C P, Samii A, Mosley A D. et al . A clinic-based study of the lrrk2 gene in parkinson disease yields new mutations.  Neurology. 2005;  65 741-744
  • 50 Berg D, Schweitzer K, Leitner P. et al . Type and frequency of mutations in the lrrk2 gene in familial and sporadic parkinson's disease*.  Brain. 2005;  128 3000-3011
  • 51 Kachergus J, Mata I F, Hulihan M. et al . Identification of a novel lrrk2 mutation linked to autosomal dominant parkinsonism: Evidence of a common founder across european populations.  Am J Hum Genet. 2005;  76 672-680
  • 52 Lesage S, Durr A, Tazir M. et al . Lrrk2 g2019s as a cause of parkinson's disease in north african arabs.  N Engl J Med. 2006;  354 422-423
  • 53 Ozelius L J, Senthil G, Saunders-Pullman R. et al . Lrrk2 g2019s as a cause of parkinson's disease in ashkenazi jews.  N Engl J Med. 2006;  354 424-425
  • 54 Zabetian C P, Hutter C M, Yearout D. et al . Lrrk2 g2019s in families with parkinson disease who originated from europe and the middle east: Evidence of two distinct founding events beginning two millennia ago.  Am J Hum Genet. 2006;  79 752-758
  • 55 Cookson M R, Xiromerisiou G, Singleton A. How genetics research in parkinson's disease is enhancing understanding of the common idiopathic forms of the disease.  Curr Opin Neurol. 2005;  18 706-711
  • 56 Galter D, Westerlund M, Carmine A. et al . Lrrk2 expression linked to dopamine-innervated areas.  Ann Neurol. 2006;  59 714-719
  • 57 West A B, Moore D J, Biskup S. et al . Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity.  Proc Natl Acad Sci USA. 2005;  102 16842-16847
  • 58 Smith W W, Pei Z, Jiang H. et al . Kinase activity of mutant lrrk2 mediates neuronal toxicity.  Nat Neurosci. 2006;  9 1231-1233
  • 59 Smith W W, Pei Z, Jiang H. et al . Leucine-rich repeat kinase 2 (lrrk2) interacts with parkin, and mutant lrrk2 induces neuronal degeneration.  Proc Natl Acad Sci USA. 2005;  102 18676-18681
  • 60 Gloeckner C J, Kinkl N, Schumacher A. et al . The parkinson disease causing lrrk2 mutation i2020t is associated with increased kinase activity.  Hum Mol Genet. 2006;  15 223-232
  • 61 Greggio E, Jain S, Kingsbury A. et al . Kinase activity is required for the toxic effects of mutant lrrk2/dardarin.  Neurobiol Dis. 2006;  23 329-341
  • 62 Giasson B I, Covy J P, Bonini N M. et al . Biochemical and pathological characterization of lrrk2.  Ann Neurol. 2006;  59 315-322
  • 63 Huynh D P, Nguyen D T, Pulst-Korenberg J B. et al . Parkin is an e3 ubiquitin-ligase for normal and mutant ataxin-2 and prevents ataxin-2-induced cell death.  Exp Neurol. 2007;  203 531-541
  • 64 Spillantini M G, Schmidt M L, Lee V M. et al . Alpha-synuclein in lewy bodies.  Nature. 1997;  388 839-840
  • 65 Rajput A, Dickson D W, Robinson C A. et al . Parkinsonism, lrrk2 g2019s, and tau neuropathology.  Neurology. 2006;  67 1506-1508
  • 66 Wszolek Z K, Pfeiffer R F, Tsuboi Y. et al . Autosomal dominant parkinsonism associated with variable synuclein and tau pathology.  Neurology. 2004;  62 1619-1622
  • 67 Khan N L, Jain S, Lynch J M. et al . Mutations in the gene lrrk2 encoding dardarin (park8) cause familial parkinson's disease: Clinical, pathological, olfactory and functional imaging and genetic data.  Brain. 2005;  128 2786-2796
  • 68 Gandhi S, Muqit M M, Stanyer L. et al . Pink1 protein in normal human brain and parkinson's disease.  Brain. 2006;  129 1720-1731
  • 69 Au W L, Calne D B. A reassessment of the lewy body.  Acta Neurol Taiwan. 2005;  14 40-47
  • 70 Sun M, Latourelle J C, Wooten G F. et al . Influence of heterozygosity for parkin mutation on onset age in familial parkinson disease: The genepd study.  Arch Neurol. 2006;  63 826-832
  • 71 Hilker R, Klein C, Ghaemi M. et al . Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene.  Ann Neurol. 2001;  49 367-376
  • 72 Buhmann C, Binkofski F, Klein C. et al . Motor reorganization in asymptomatic carriers of a single mutant parkin allele: A human model for presymptomatic parkinsonism.  Brain. 2005;  128 2281-2290
  • 73 Walter U, Klein C, Hilker R. et al . Brain parenchyma sonography detects preclinical parkinsonism.  Mov Disord. 2004;  19 1445-1449
  • 74 Klein C. Implications of genetics on the diagnosis and care of patients with parkinson disease.  Arch Neurol. 2006;  63 328-334
  • 75 Hicks A A, Petursson H, Jonsson T. et al . A susceptibility gene for late-onset idiopathic parkinson's disease.  Ann Neurol. 2002;  52 549-555
  • 76 Pankratz N, Nichols W C, Uniacke S K. et al . Significant linkage of parkinson disease to chromosome 2q36 - 37.  Am J Hum Genet. 2003;  72 1053-1057
  • 77 Tan E K, Khajavi M, Thornby J I. et al . Variability and validity of polymorphism association studies in parkinson's disease.  Neurology. 2000;  55 533-538
  • 78 Skipper L, Wilkes K, Toft M. et al . Linkage disequilibrium and association of mapt h1 in parkinson disease.  Am J Hum Genet. 2004;  75 669-677
  • 79 Tan E K, Zhao Y, Skipper L. et al . The lrrk2 gly2385arg variant is associated with parkinson's disease: Genetic and functional evidence.  Hum Genet. 2007;  120 857-863
  • 80 Maraganore D M, Andrade M de, Elbaz A. et al . Collaborative analysis of alpha-synuclein gene promoter variability and parkinson disease.  Jama. 2006;  296 661-670
  • 81 Maraganore D M, Lesnick T G, Elbaz A. et al . Uchl1 is a parkinson's disease susceptibility gene.  Ann Neurol. 2004;  55 512-521
  • 82 Healy D G, Abou-Sleiman P M, Casas J P. et al . Uchl-1 is not a parkinson's disease susceptibility gene.  Ann Neurol. 2006;  59 627-633
  • 83 Liu Y, Fallon L, Lashuel H A. et al . The uch-l1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and parkinson's disease susceptibility.  Cell. 2002;  111 209-218
  • 84 Ramirez A, Heimbach A, Grundemann J. et al . Hereditary parkinsonism with dementia is caused by mutations in atp13a2, encoding a lysosomal type 5 p-type atpase.  Nat Genet. 2006;  38 1184-1191
  • 85 Lohmann E, Periquet M, Bonifati V. et al . How much phenotypic variation can be attributed to parkin genotype?.  Ann Neurol. 2003;  54 176-185
  • 86 Hedrich K, Eskelson C, Wilmot B. et al . Distribution, type, and origin of parkin mutations: Review and case studies.  Mov Disord. 2004;  19 1146-1157
  • 87 McInerney-Leo A, Hadley D W, Gwinn-Hardy K, Hardy J. Genetic testing in parkinson's disease.  Mov Disord. 2005;  20 1-10
  • 88 Romito L M, Contarino M F, Ghezzi D. et al . High frequency stimulation of the subthalamic nucleus is efficacious in parkin disease.  J Neurol. 2005;  252 208-211
  • 89 Schupbach M, Lohmann E, Anheim M. et al . Subthalamic nucleus stimulation is efficacious in patients with parkinsonism and lrrk2 mutations.  Mov Disord. 2007;  22 119-122
  • 90 Polymeropoulos M H, Higgins J J, Golbe L I. et al . Mapping of a gene for parkinson's disease to chromosome 4q21 - q23.  Science. 1996;  274 1197-1199
  • 91 Polymeropoulos M H, Lavedan C, Leroy E. et al . Mutation in the alpha-synuclein gene identified in families with parkinson's disease.  Science. 1997;  276 2045-2047
  • 92 Singleton A B, Farrer M, Johnson J. et al . Alpha-synuclein locus triplication causes parkinson's disease.  Science. 2003;  302 841
  • 93 Kruger R, Kuhn W, Muller T. et al . Ala30pro mutation in the gene encoding alpha-synuclein in parkinson's disease.  Nat Genet. 1998;  18 106-108
  • 94 Zarranz J J, Alegre J, Gomez-Esteban J C. et al . The new mutation, e46k, of alpha-synuclein causes parkinson and lewy body dementia.  Ann Neurol. 2004;  55 164-173
  • 95 Matsumine H, Saito M, Shimoda-Matsubayashi S. et al . Localization of a gene for an autosomal recessive form of juvenile parkinsonism to chromosome 6q25.2 - 27.  Am J Hum Genet. 1997;  60 588-596
  • 96 Gasser T, Muller-Myhsok B, Wszolek Z K. et al . A susceptibility locus for parkinson's disease maps to chromosome 2p13.  Nat Genet. 1998;  18 262-265
  • 97 Leroy E, Boyer R, Auburger G. et al . The ubiquitin pathway in parkinson's disease.  Nature. 1998;  395 451-452
  • 98 Valente E M, Bentivoglio A R, Dixon P H. et al . Localization of a novel locus for autosomal recessive early-onset parkinsonism, park6, on human chromosome 1p35 - p36.  Am J Hum Genet. 2001;  68 895-900
  • 99 Duijn C M van, Dekker M C, Bonifati V. et al . Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36.  Am J Hum Genet. 2001;  69 629-634
  • 100 Bonifati V, Rizzu P, Squitieri F. et al . Dj-1( park7), a novel gene for autosomal recessive, early onset parkinsonism.  Neurol Sci. 2003;  24 159-160
  • 101 Funayama M, Hasegawa K, Kowa H. et al . A new locus for parkinson's disease (park8) maps to chromosome 12p11.2 - q13.1.  Ann Neurol. 2002;  51 296-301
  • 102 Hampshire D J, Roberts E, Crow Y. et al . Kufor-rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36.  J Med Genet. 2001;  38 680-682
  • 103 Ramirez A, Heimbach A, Grundemann J. et al . Hereditary parkinsonism with dementia is caused by mutations in atp13a2, encoding a lysosomal type 5 p-type atpase.  Nat Genet. 2006;  38 1184-1191
  • 104 Pankratz N, Nichols W C, Uniacke S K. et al . Genome screen to identify susceptibility genes for parkinson disease in a sample without parkin mutations.  Am J Hum Genet. 2002;  71 124-135
  • 105 Pankratz N, Nichols W C, Uniacke S K. et al . Genome-wide linkage analysis and evidence of gene-by-gene interactions in a sample of 362 multiplex parkinson disease families.  Hum Mol Genet. 2003;  12 2599-2608
  • 106 Scott W K, Nance M A, Watts R L. et al . Complete genomic screen in parkinson disease: Evidence for multiple genes.  JAMA. 2001;  286 2239-2244
  • 107 Strauss K M, Martins L M, Plun-Favreau H. et al . Loss of function mutations in the gene encoding omi/htra2 in parkinson's disease.  Hum Mol Genet. 2005;  14 2099-2111
  • 108 Marx F P, Holzmann C, Strauss K M. et al . Identification and functional characterization of a novel r621c mutation in the synphilin-1 gene in parkinson's disease.  Hum Mol Genet. 2003;  12 1223-1231
  • 109 Le W D, Xu P, Jankovic J. et al . Mutations in nr4a2 associated with familial parkinson disease.  Nat Genet. 2003;  33 85-89
  • 110 Ruano D, Macedo A, Dourado A. et al . Nr4a2 and schizophrenia: Lack of association in a portuguese/brazilian study.  Am J Med Genet B Neuropsychiatr Genet. 2004;  128 41-45
  • 111 Wellenbrock C, Hedrich K, Schafer N. et al . Nr4a2 mutations are rare among european patients with familial parkinson's disease.  Ann Neurol. 2003;  54 415
  • 112 Hering R, Petrovic S, Mietz E M. et al . Extended mutation analysis and association studies of nurr1 (nr4a2) in parkinson disease.  Neurology. 2004;  62 1231-1232
  • 113 Davidzon G, Greene P, Mancuso M. et al . Early-onset familial parkinsonism due to polg mutations.  Ann Neurol. 2006;  59 859-862
  • 114 Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R. Mutations in the glucocerebrosidase gene and parkinson's disease in ashkenazi jews.  N Engl J Med. 2004;  351 1972-1977
  • 115 Lwin A, Orvisky E, Goker-Alpan O. et al . Glucocerebrosidase mutations in subjects with parkinsonism.  Mol Genet Metab. 2004;  81 70-73

1 Diese beiden Autoren haben in gleicher Weise zur Entstehung des Manuskriptes beigetragen.

Prof. Dr. med. Christine Klein

Lichtenberg-Professorin für Klinische und Molekulare Neurogenetik, Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck

Ratzeburger Allee 160

23538 Lübeck

Email: christine.klein@neuro.uni-luebeck.de