Aktuelle Neurologie 2007; 34: S245-S248
DOI: 10.1055/s-2006-952022
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Einführung und Wirkmechanismen

Introduction and Mechanism of ActionB.  J.  Steinhoff1 , B.  N.  Bauer2
  • 1Epilepsieklinik für Erwachsene, Diakonie Kork
  • 2Eisai GmbH, Frankfurt
Further Information

Publication History

Publication Date:
04 March 2008 (online)

Zusammenfassung

Zonisamid (ZNS) ist ein Benzisoxazolderivat, das sich strukturell von bisher zugelassenen antiepileptisch wirksamen Substanzen unterscheidet. Es besitzt multiple Wirkmechanismen, deren Bedeutung für die antikonvulsive Wirkung noch nicht vollständig geklärt ist. So unterbricht Zonisamid die synchronisierte neuronale Entladung durch direkte Effekte auf spannungsabhängige Natriumkanäle und T-Typ-Kalziumkanäle. Dadurch wird die Verbreitung von epileptischen Entladungen reduziert und die epileptische Aktivität unterbunden. Zugleich besitzt Zonisamid eine modulatorische Wirkung auf die GABA-vermittelte neuronale Inhibition und es gibt Hinweise, dass die Substanz sowohl die dopaminerge und serotonerge Neurotransmission erleichtert als auch den Azetylcholinstoffwechsel beeinflusst. Auch eine Inhibition der exzitatorischen glutamatergen Transmission durch Reduktion der präsynaptischen Glutamatfreisetzung wurde beschrieben. Klinisch scheinen diese multiplen Wirkmechanismen mit einer breiten antikonvulsiven Wirksamkeit zu korrelieren.

Abstract

Zonisamide (ZNS) is a benzisoxazole derivate not structurally related to currently licensed antiepileptic drugs. It has multiple modes of action whose impact on the anticonvulsant effect is not yet fully understood: ZNS interrupts the synchronized neuronal firing through direct effects on voltage-dependent sodium and T-type calcium channels. Thus epileptiform propagation and activity are blocked. Furthermore ZNS has a modulating effect on the GABAergic inhibition, and may act on the dopaminergic and serotonergic neurotransmission and on acetylcholine pathways. An inhibition of excitatory glutamatergic transmission by reduction of the presynaptic release of glutamate has been also described. These modes of action suggest a broad anticonvulsant efficacy.

Literatur

  • 1 National Institute for Clinical Excellence .Clinical Guideline 20. The Epilepsies: the Diagnosis and Management of Epilepsies in Adults and Children in primary and secondary Care. October 2004 http://www.nice.org.uk/CG020NICEguideline
  • 2 Brodie M J, Mumford J P. Double-blind substitution of vigabatrin and valproate in carbamazepine-resistant partial epilepsy.  Epilepsy Res. 1999;  34 199-205
  • 3 Perucca E, Levy R. Combination therapy and drug interactions. In: Levy R, Mattson R, Meldrim B, Perucca E (eds) Antiepileptic Drugs, 5th ed. Philadelphia, USA; Lippincott, Williams & Wilkins 2002: 96-102
  • 4 Wallace S J. Newer antiepileptic drugs: advantages and disadvantages.  Brain & Development. 2001;  23 277-283
  • 5 Kanner A M. The complex epilepsy patient: intricacies of assessment and treatment.  Epilepsia. 2003;  44, Suppl 5 3-8
  • 6 Anderson G D, Miller J W. Newer antiepileptic drugs: Their collective role and defining characteristics.  Formulary. 2001;  36 114-135
  • 7 Schauf C L. Zonisamide enhance slow sodium activation in Myxicola.  Brain Res. 1987;  413 185-188
  • 8 Rock D M, Macdonald R L, Taylor C P. Blockade of sustained repetitive action potentials in cultured spinal cord neurons by zonisamide (AD-810, CI-912), a novel anticonvulsant.  Epilepsy Res. 1989;  3 138-143
  • 9 McLean M J, Macdonald R L, Taylor C P. Blockade of sustained repetitive action potentials in cultured spinal cord neurons by zonisamide (AD 810, CI 912), a novel anticonvulsant.  Epilepsy Res. 1989;  3 138-143
  • 10 Suzuki N, Seki T, Yamawake H. Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex.  Epilepsy Res. 1992;  12 21-27
  • 11 Kito M, Maehara M, Wantanabe K. Mechanism of T-type calcium channel blockade by zonisamide.  Seizure. 1996;  5 115-119
  • 12 Coulter D A, Hugenard J R, Prince D A. Specific petit mal anticonvulsants reduce calcium currents in thalamic neurons.  Neurosci Lett. 1989;  98 74-78
  • 13 Coulter D A, Hugenard J R, Prince D A. Characterization of ethosuximide reduction of low-threshold calcium currents in thalamic neurons.  Neurosci Lett. 1989;  25 582-593
  • 14 Kelly K M, Gross R A, Macdonald R L. Valproic acid selectively reduces the low-threshold (T) calcium in rat nodose neurons.  Neurosci Lett. 1990;  116 233-238
  • 15 Kawai M, Hiramatsu M, Endo A. et al . Effect of zonisamid on the release of aspartic acid and gamma-aminobutyric acid from the hippocampal slices of E1 mice.  Neurosciences. 1994;  20 115-119
  • 16 Okada M, Kaneko S, Hirano T. et al . Effects of zonisamide on dopaminergic system.  Epilepsy Res. 1995;  22 193-205
  • 17 Kaneko S, Okada M, Hirano T. et al . Carbamazepine and zonisamide increase extracellular dopamine and serotonin levels in vivo, and carbamazepine does not antagonize adenosic effect in vitro: mechanisms of blockade of seizure spread.  Jpn J Psychiatry Neurol. 1993;  47 371-373
  • 18 Okada M, Kaneko S, Hirato T. et al . Effets of zonisamide on extracellular levels of monoamine and its metabolites, and on Ca2+ dependent dopamine release.  Epilepsy Res. 1992;  13 113-119
  • 19 Okada M. Effects of carbamazepine and Zonisamid on monoaminergic system in rat striatum and hippocampus.  J Psychopharmacol. 1994;  14 337-354
  • 20 Okada M, Hirano T, Kawata Y. et al . Biphasic effects of zonisamide on serotonergic system in rat hippocampus.  Epilepsy Res. 1999;  34 187-197
  • 21 Mizuno K. Effects of carbamazepin and zonisamide on acetylcholin levels in rat striatum.  Nihon Shinkei Seisin Yakurigaku Zasshi. 1997;  17 17-23
  • 22 Zhu W, Rogawski M A. Zonisamide depresses excitatory synaptic transmission by a presynaptic action.  Epilepsia. 1999;  40 (Suppl 7) 245
  • 23 Okada M, Kawata Y, Mizuno K. et al . Interaction between Ca2+, K+, carbamazepine and zonisamide on hippocampal extracellular glutamate monitored with microdialysis electrode.  Br J Pharmacol. 1998;  124 1277-1285
  • 24 Masuda Y, Karasawa T. Inhibitory effect on zonisamide on human carbonic anhydrase in vitro.  Arzneimittelforschung. 1993;  43 416-418
  • 25 Masuda Y, Noguchi H, Karasawa T. Evidence against a significant implication of carbonic anhydrase inhibitory activity of zonisamide in its anticonvulsive effects.  Arzneimittelforschung. 1994;  44 267-269
  • 26 MacDonald R L. Zonisamide mechanisms of action. In: Levy RH, Mattson RH, Meldrum BS, Perucca E Antiepileptic Drugs, 5th ed. Philadelphia, USA; Lippincott, Williams & Wilkins 2002: 867-872
  • 27 Wada Y, Hasegawa H, Okuda A. et al . Anticonvulsant effects of zonisamide and phenytoin on seizure activity of the feline visual cortex.  Brain Dev. 1990;  12 206-210
  • 28 Takano K, Tanaka T, Fujita T. et al . Zonisamide. Electrophysiological and metabolic changes in kainic acid-induced limbic seizures in rats.  Epilepsia. 1995;  36 644-648
  • 29 Ito T, Hori M, Masuda Y. et al . 3-Sulfamyolmethyl-1,2-benzisoxazole, a new type of anticonvulsant drug: electroencephalographic profile.  Arzneimittelforschung. 1980;  30 603-609
  • 30 Ito T, Hori M, Kadokawa T. Effects of zonisamide (AD-810) on tungstic acid gel-induced thalamic generalized seizures and conjugated estrogen-induced cortical spikewave discharges in cats.  Epilepsia. 1986;  27 367-374
  • 31 Kamei C, Oka M, Masuda Y. et al . Effects of 3-sulfamoylmethyl1,2-benzisoazole and some antiepileptics on the kindled seizures in the neocortex, hippocampus and amygdala in rats.  Arch Int Pharmacodyn. 1981;  249 164-176
  • 32 Hamada K, Ishida S, Yagi K, Seino M. Anti-convulsant effects of zonisamide on amygdaloid kindling in rats.  Neurosciences. 1990;  16 407-412
  • 33 Kakegawa N. An experimental study on the modes of appearance and disappearance of suppressive effect of antiepileptic drugs on kindled seizure.  Psychiatr Neurol Jpn. 1986;  88 81-98
  • 34 Bartoszyk G D, Hamer M. The genetic animal model of reflex epilepsy in the Mongolian gerbil: differential efficacy of new anticonvulsive drugs and prototype antiepileptics.  Pharmacol Res Comun. 1987;  19 429-440
  • 35 Nakamura J, Tamura S, kandra T. et al . Inhibition by topiramate of seizures in spontaneously epileptic rats and DBA/2 mice.  Eur J Pharmacol. 1994;  254 83-89
  • 36 Hosford D A, Wang Y. Utility of lethargic (lh/lh) mouse model for absence seizures in predicting the effects of lamotrigine, vigabatrin, tiagabin, gabapentin and topiramate against human absence seizures.  Epilepsia. 1997;  38 408-414
  • 37 Masuda Y, Karasawa T, Shiraishi Y. et al . 3-Sulfamoylmethyl-1,2-benz-isoazole, a new type of anticonvulsant drug: pharmacological profile.  Arzneimittelforschung. 1980;  30 477-483
  • 38 Mertz T, Kaplin H. Cardiovascular effects of AD-810 (CI-912): and the reference anticonvulsant agent phenytoin in a variety of animal models and species. RR 740-00909, 02/18/82. 
  • 39 McLean J R. Comprehensive summary of the pharmacology of CI-912, a new anticonvulsant drug. RRR 740-00910, 02/19/82. 
  • 40 Sackellares J C, Ramsay R E, Wilder B J. et al . Randomized, controlled clinical trial of zonisamide as adjunctive treatment for refractory partial seizures.  Epilepsia. 2004;  45 610-617

Prof. Dr. Bernhard J. Steinhoff

Epilepsieklinik für Erwachsene, Diakonie Kork

Landstraße 1

77694 Kehl-Kork

Email: BSteinhoff@epilepsiezentrum.de