Zusammenfassung
In der Diagnostik der Parkinsonerkrankungen hat der PET-Tracer 6-[18F]fluoro-L-3,4-dihydroxyphenylalanin
(FDOPA) weite Verbreitung gefunden. Die Aminosäure ist als wichtiger Baustein im Proteinstoffwechsel
und als Vorstufe in der Katecholaminsynthese auch zur Untersuchung einer Vielzahl,
vor allem neuroendokriner, Tumore geeignet. Die spezifischen Anreicherungsmechanismen
des FDOPA lassen diesen Radiotracer als ein Musterbeispiel der „Molekularen Bildgebung”
erscheinen. Die vorliegende Arbeit fasst eigene Erfahrungen und die publizierten Ergebnisse
onkologischer PET-Untersuchungen mit FDOPA zusammen und bewertet den Stellenwert der
Methode bei klinischen Fragestellungen. Hervorragende Ergebnisse werden vor allem
im Staging von Phäochromozytomen und Paragangliomen sowie Serotonin-positiven neuroendokrinen
Tumoren des gastroenteropankreatischen Systems (NET-GEP) erreicht. In der schwierigen
Rezidivdiagnostik medullärer Schilddrüsenkarzinome erweitert FDOPA die Palette der
Untersuchungsmöglichkeiten. Auch in der Diagnostik von Hirntumoren bietet sich FDOPA
als Alternative zu 11C-markierten Aminosäuren an. Erste Arbeiten zeigten eine hohe Genauigkeit in der Unterscheidung
zwischen Tumorrezidiv und Strahlennekrose sowohl bei hoch- als auch bei niedrig-differenzierten
Tumoren. Des Weiteren korreliert die FDOPA-Speicherung mit der Expression von Proliferationsmarkern.
Therapierelevant ist heute die nichtinvasive Differenzierung einer fokalen von der
diffusen Form des kongenitalen Hyperinsulinismus, der kleinere operative Eingriffe
erlaubt und vielen betroffenen Kindern eine Prognose ohne Diabetes mellitus ermöglicht.
Abstract
In recent years, positron emission tomography with 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine
(FDOPA) has become a wide-spread method in the diagnostics of Parkinson's disease.
The amino acid is an important component in protein metabolism. As a precursor in
the synthesis of catecholamines it is also of use in metabolic imaging of a variety,
mostly neuroendocrine, tumors. The specific uptake mechanisms make FDOPA a paradigm
of metabolic imaging. The current review assesses the value of the tracer in the diagnostics
of different oncological diseases. It summarizes own experiences and the published
results of oncological FDOPA PET-studies. Above all, there is a very high impact of
FDOPA in the staging of pheochromocytomas and paragangliomas as well as serotonin-positive
neuroendocrine tumors of the gastroentero-pancreatic system (NET-GEPs). Additionally,
FDOPA extends the diagnostic possibilities in recurrent medullary thyroid cancer.
In the imaging of tumors of the central nervous system, FDOPA represents an alternative
to 11C-labelled PET-tracers. First reports show a high accuracy in the differentiation
of radiation induced necrosis and recurrent disease in both high and low grade brain
tumors. Furthermore, there is a correlation between the uptake of FDOPA and the expression
of proliferation markers. Today, the noninvasive differentiation of focal and diffuse
congenital hyperinsulinism has therapeutic consequences. In cases of focal disease,
the extent of pancreas resection can be limited resulting in better prognosis without
diabetes mellitus.
Schlüsselwörter
FDOPA - PET - Paragangliome - neuroendokrine Tumore - medulläres Schilddrüsenkarzinom
Key words
FDOPA - PET - paraganglioma - neuroendocrine tumors - medullary thyroid cancer
Literatur
- 1
Martin W RW, Palmer M R, Patlak C S, Calne D B.
Nigrostriatal function in humans studied with positron emission tomography.
Ann Neurol.
1989;
26
535-542
- 2
Shinotoh H.
Neuroimaging of PD, PSP, CBD and MSA-PET and SPECT studies.
J Neurol.
2006;
253 (Suppl 3)
iii30-iii34
- 3
Cumming P, Boyes B E, Martin W RW, Adam M, Grierson J, Ruth T, McGeer E G.
The metabolism of [18F]6-Fluoro-3,4-dihydroxyphenylalanine in the hooded rat.
J Neurochem.
1987;
48
601-608
- 4
Firnau G, Sood S, Chirakal R, Nahmias C, Garnett E S.
Cerebral metabolism of [18F]6-Fluoro-3,4-dihydroxyphenylalanine in the primate.
J Neurochem.
1987;
48
1077-1082
- 5
Hoffman J M, Melega W P, Hawk T C, Grafton S C, Luxen A, Mahoney D K, Barrio J R,
Huang S C, Mazziotta J C, Phelps M E.
The effects of carbidopa administration on 6-[18F]-Fluoro-3,4-dihydroxyphenylalanine
kinetics in positron emission tomography.
J Nucl Med.
1992;
33
1472-1477
- 6
Huang S C, Yu D C, Barrio J R, Grafton S, Melega W P, Hoffman J M, Satyamurthy N,
Mazziotta J C, Phelps M E.
Kinetics and modelling of L-6-[18F]Fluoro-DOPA in human positron emission tomographic
studies.
J Cereb Blood Flow Metab.
1991;
11
898-913
- 7
Luxen A, Guillaume M, Melega W P, Pike V W, Solin O, Wagner R.
Production of 6-[18F]-Fluoro-L-DOPA and its metabolism - a critical review.
Nucl Med Biol.
1992;
19
149-158
- 8
Boyes B E, Cumming P, Martin W RW, McGeer E G.
Determination pf plasma [18F]6-Fluorodopa during positron emission tomography: elimination and metabolism in
carbidopa treated subjects.
Life sciences.
1986;
39
2243-2252
- 9
Wahl L, Nahmias C.
Modeling of Fluorine-18-6-Fluoro-L-Dopa in humans.
J Nucl Med.
1996;
37
432-437
- 10
Cumming P, Leger G C, Kuwabara H, Gjedde A.
Pharmacokinetics of plasma 6-[18F]Fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA) in humans.
J Cereb Blood Flow Metabolism.
1993;
13
668-675
- 11
Melega W P, Hoffmann J M, Luxen A, Nissenson C HK, Phelps M E, Barrio J R.
The effects of carbidopa on the metabolism of [18F]6-Fluoro-L-dopa in rats, monkeys, and humans.
Life sciences.
1990;
47
149-157
- 12
Beuthien-Baumann B, Bredow J, Burchert W, Fuchtner F, Bergmann R, Alheit H D, Reiss G,
Hliscs R, Steinmeier R, Franke W G, Johannsen B, Kotzerke J.
3-O-methyl-6-[18F]fluoro-L-DOPA and its evaluation in brain tumour imaging.
Eur J Nucl Med Mol Imaging.
2003;
30
1004-1008
- 13
Beuthien-Baumann B, Alheit H, Oehme L, Winkler C, Füchtner F, Höpping A, Kotzerke J.
Bestrahlungsplanung von Hirntumoren unter Berücksichtigung von F-18-3-O-methyl-fluorodopa
(OMFT) und Positronen-Emissions-Tomografie (PET).
Nuklearmedizin.
2006;
45
A71
, abstract V183
- 14
Ilias I, Yu J, Carrasquillo J A, Chen C C, Eisenhofer G, Whatley M, McElroy B, Pacak K.
Superiority of 6-[(18)f]-fluorodopamine positron emission tomography versus [(131)i]-metaiodobenzylguanidine
scintigraphy in the localization of metastatic pheochromocytoma.
J Clin Endocrinol Metab.
2003;
88
4083-4087
- 15
Pacak K, Eisenhofer G, Carasquillo J A, Chen C C, Li S T, Goldstein D S.
[18F]fluorodopamine positron emission tomographic (PET) scanning for diagnostic localization
of pheochromocytoma.
Hypertension.
2001;
38
6-8
- 16
Hoegerle S, Nitzsche E, Altehoefer C, Ghanem N, Manz T, Brink I, Reincke M, Moser E,
Neumann H P.
Pheochromocytomas: detection with 18F DOPA whole-body PET - initial results.
Radiology.
2003;
222
507-512
- 17
Hoegerle S, Ghanem N, Altehoefer C, Schipper J, Brink I, Moser E, Neumann H P.
18F-DOPA positron emission tomography for the detection of glomus tumours.
Eur J Nucl Med Mol Imaging.
2003;
30
689-694
- 18
Hoegerle S, Altehoefer C, Ghanem N, Koehler G, Waller C F, Scheruebl H, Moser E, Nitzsche E.
Whole-body 18F DOPA PET for detection of gastrointestinal carcinoid tumors.
Radiology.
2001;
220
373-380
- 19
Becherer A, Szabo M, Karanikas G, Wunderbaldinger P, Angelberger P, Raderer M, Kurtaran A,
Dudczak R, Kletter K.
Imaging of advanced neuroendocrine tumors with (18)F-FDOPA PET.
J Nucl Med.
2004;
45
1161-1167
- 20
Helisch A, Fottner C, Schreckenberger M, Weber M, Bartenstein P.
Pre-therapeutic localisation of multifocal pheochromocytomas and paragangliomas. Superiority
of F-18-DOPA PET vs. Iodine-123-MIBG scintigraphy.
J Nucl Med.
2006;
47 (suppl. 1)
81P
, abstract 228
- 21
Koopmans K P, de Vries E G, Kema I P, Elsinga P H, Neels O C, Sluiter W J, van der
Horst-Schrivers A N, Jager P L.
Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study.
Lancet Oncol.
2006;
7
728-734
- 22
Hoegerle S, Altehoefer C, Ghanem N, Brink I, Moser E, Nitzsche E.
18F DOPA positron emission tomography for tumour detection in patients with medullary
thyroid carcinoma and elevated calcitonin levels.
Eur J Nucl Med.
2001;
28
64-71
- 23
Mottaghy F, Karges W, Zeich K, Blumstein N M, Neumaier B, Buck A K, Reske S N.
Detection of recurrent medullary thyroid carcinoma (MTC) by F-18-DOPA PET/CT.
J Nucl Med.
2006;
47 (suppl. 1)
165P
, abstract 472
- 24
Chen W, Silverman D H, Delaloye S, Czernin J, Kamdar N, Pope W, Satyamurthy N, Schiepers C,
Cloughesy T.
18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy.
J Nucl Med.
2006;
47
904-911
- 25
Koopmans K P, Brouwers A H, De Hooge M N, Van der Horst-Schrivers A N, Kema I P, Wolffenbuttel B H,
De Vries E G, Jager P L.
Carcinoid crisis after injection of 6-18F-fluorodihydroxyphenylalanine in a patient
with metastatic carcinoid.
J Nucl Med.
2005;
46
1240-1243
- 26
Brown W D, Oakes T R, DeJesus O T, Taylor M D, Roberts A D, Nickles R J, Holden J E.
Fluorine-18-fluoro-L-DOPA dosimetry with carbidopa pretreatment.
J Nucl Med.
1998;
39
1884-1891
- 27
Knapp W H.
Guidelines for tumor diagnosis with (F-18)-fluorodeoxyglucose (FDG).
Nuklearmedizin.
1999;
38
267-269
- 28
Neumann H PH, Berger D P, Sigmund G, Blum U, Schmidt D, Parmer R J, Volk B, Kirste G.
Pheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel-Lindau disease.
N Engl J Med.
1993;
329
1531-1538
- 29
Nuenberg D.
Ultrasound of adrenal gland tumours and indications for fine needle biopsy (uFNB).
Ultraschall Med.
2005;
26
458-469
- 30
Kann P H, Kann B, Fassbender W J, Forst T, Bartsch D K, Langer P.
Small neuroendocrine pancreatic tumors in multiple endocrine neoplasia type 1 (MEN1):
least significant change of tumor diameter as determined by endoscopic ultrasound
(EUS) imaging.
Exp Clin Endocrinol Diabetes.
2006;
114
361-365
- 31
Goldstein R E, O'Neill Jr J A, Holcomb 3rd
G W, Morgan 3rd
W M, Neblett 3rd
W W, Oates J A, Brown N, Nadeau J, Smith B, Page D L, Abumrad N N, Scott Jr H W.
Clinical experience over 48 years with pheochromocytoma.
Ann Surg.
1999;
229
755-764
- 32
Maurea S, Cuocolo A, Reynolds J C, Neumann R D, Salvatore M.
Diagnostic imaging in patients with paragangliomas. Computed tomography, magnetic
resonance and MIBG scintigraphy comparison.
Q J Nucl Med.
1996;
40
365-371
- 33
Mannelli M, Ianni L, Cilotti A, Conti A.
Pheochromocytoma in Italy: a multicentric retrospective study.
Eur J Endocrinol.
1999;
141
619-624
- 34
Quint L E, Glazer G M, Francis I R, Shapiro B, Chenevert T L.
Pheochromocytoma and paraganlioma: comparison of MRI imaging with CT and I-131 MIBG
scintigraphy.
Radiology.
1987;
165
89-93
- 35
Velchik M G, Alavi A, Kressel H Y, Engelman K.
Localization of pheochromocytoma: MIGB, CT, and MRI correlation.
J Nucl Med.
1989;
30
328-336
- 36
Varghese J C, Hahn P F, Papanicolaou N, Mayo-Smith W W, Gaa J A, Lee M J.
MR differentiation of phaeochromocytoma from other adrenal lesions based on qualitative
analysis of T2 relaxation times.
Clin Radiol.
1997;
52
603-606
- 37
Hoefnagel C A.
Metaiodobenzylguanidin and somatostatin in oncology: role in the management of neural
crest tumours.
Eur J Nucl Med.
1994;
21
561-581
- 38
Bombardieri E, Seregni E, Villano C, Chiti A, Bajetta E.
Position of nuclear medicine modalities in the diagnostic work-up of breast cancer.
Q J Nucl Med Mol Imaging.
2004;
48
109-118
- 39
Shulkin B L, Thomson N W, Shapiro B, Francis I R, Sisson J C.
Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET.
Radiology.
1999;
212
35-41
- 40
Bergstrom M, Eriksson B, Oberg K, Sundin A, Ahlstrom H, Lindner K J, Bjurling P, Langstrom B.
In vivo demonstration of enzyme activity in endocrine pancreatic tumors: decarboxylation
of carbon-11-dopamine.
J Nucl Med.
1996;
37
32-37
- 41
Brink I, Schaefer O, Walz M, Neumann H P.
Fluorine-18 DOPA PET imaging of paraganglioma syndrome.
Clin Nucl Med.
2006;
31
39-41
- 42 Solcia E, Klöppel G, Sobin L H. Histological Typing of endocrine Tumors. 2nd edn.
Springer, Berlin, Heidelberg, New York 2000
- 43
Tiling N, Ricke J, Wiedenmann B.
Neuroendokrine Tumoren des gastroenteropankreatischen Systems (GEP-NET).
Internist.
2002;
43
210-218
- 44
Caplin M E, Buscombe J R, Hilson A J, Jones A L, Watkinson A F, Burroughs A K.
Carcinoid tumour.
Lancet.
1998;
352
799-805
- 45
Kaltsas G, Korbonits M, Heintz E, Mukherjee J J, Jenkins P J, Chew S L, Reznek R,
Monson J P, Besser G M, Foley R, Britton K E, Grossman A B.
Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the
diagnosis and localization of advanced neuroendocrine tumors.
J Clin Endocrinol Metab.
2001;
86
895-902
- 46
Pacak K, Eisenhofer G, Goldstein D S.
Functional imaging of endocrine tumors: role of positron emission tomography.
Endocr Rev.
2004;
25
568-580
- 47
Vesselle H, Schmidt R A, Pugsley J M, Li M, Kohlmyer S G, Vallires E, Wood D E.
Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron
emission tomography.
Clin Cancer Res.
2000;
6
3837-3844
- 48
Higashi K, Ueda Y, Ayabe K, Sakurai A, Seki H, Nambu Y, Oguchi M, Shikata H, Taki S,
Tonami H, Katsuda S, Yamamoto I.
FDG PET in the evaluation of the aggressiveness of pulmonary adenocarcinoma: correlation
with histopathological features.
Nucl Med Commun.
2000;
21
707-714
- 49
Koukouraki S, Strauss L G, Georgoulias V, Eisenhut M, Haberkorn U, Dimitrakopoulou-Strauss A.
Comparison of the pharmacokinetics of (68)Ga-DOTATOC and [(18)F]FDG in patients with metastatic neuroendocrine tumours scheduled for (90)Y-DOTATOC therapy.
Eur J Nucl Med Mol Imaging.
2006;
33
1115-1122
- 50
Kowalski J, Henze M, Schuhmacher J, Macke H R, Hofmann M, Haberkorn U.
Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors.
Mol Imaging Biol.
2003;
5
42-48
- 51
Montravers F, Grahek D, Kerrou K, Ruszniewski P, de Beco V, Aide N, Gutman F, Grange J D,
Lotz J P, Talbot J N.
Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in
patients with digestive endocrine tumors?.
J Nucl Med.
2006;
47
1455-1462
- 52
Orlefors H, Sundin A, Garske U, Juhlin C, Oberg K, Skogseid B, Langstrom B, Bergstrom M,
Eriksson B.
Whole-body (11)C-5-hydroxytryptophan positron emission tomography as a universal imaging
technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy
and computed tomography.
J Clin Endocrinol Metab.
2005;
90
3392-3400
- 53 Frank-Raue K. Das medulläre Schilddrüsenkarzinom: Bedeutung des Mutationsnachweises
im RET-Proto-Onkogen, Lokalisationsmethoden bei Tumorpersistenz und prognostischen
Faktoren. Johann Ambrosius Barth, Heidelberg, Leipzig 1998
- 54 Rendl J, Reiners C. Etablierte nuklearmedizinische Verfahren zur Lokalisationsdiagnostik. In:
Medulläres Schilddrüsenkarzinom. Herausgegeben von Feldkamp J, Scherbaum WA, Schott
M. Walter de Gruyter, Berlin, New York 2002
- 55
Beheshti M, Poecher S, Heinisch M, Dirisamer A, Langsteger W.
Comparison of 18F-FDG PET/CT for preoperative assessment and follow-up in patients with medullary
thyroid carcinoma (MTC).
J Nucl Med.
2006;
47 (suppl. 1)
165P
, abstract 473
- 56
Brandt-Mainz K, Muller S P, Gorges R, Saller B, Bockisch A.
The value of fluorine-18 fluorodeoxyglucose PET in patients with medullary thyroid
cancer.
Eur J Nucl Med.
2000;
27
490-496
- 57
Szakall Jr S, Esik O, Bajzik G, Repa I, Dabasi G, Sinkovics I, Agoston P, Tron L.
18F-FDG PET detection of lymph node metastases in medullary thyroid carcinoma.
J Nucl Med.
2002;
43
66-71
- 58
Musholt T J, Musholt P B, Dehdashti F, Moley J.
Evaluation of fluorodeoxyglucose-positron emission tomographic scanning and its association
with glucose transporter expression in medullary thyroid carcinoma and pheochromocytoma:
a clinical and molecular study.
Surgery.
1997;
122
1049-1061
- 59
Ricci P E, Karis J P, Heiserman J E, Fram E K, Bice A N, Drayer B P.
Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of
positron emission tomography?.
AJNR Am J Neuroradiol.
1998;
19
407-413
- 60
Olivero W C, Dulebohn S C, Lister J R.
The use of PET in evaluating patients with primary brain tumours: is it useful?.
J Neurol Neurosurg Psychiatry.
1995;
58
250-252
- 61
Weckesser M, Langen K J, Rickert C H, Kloska S, Straeter R, Hamacher K, Kurlemann G,
Wassmann H, Coenen H H, Schober O.
O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours.
Eur J Nucl Med Mol Imaging.
2005;
32
422-429
- 62
Rachinger W, Goetz C, Popperl G, Gildehaus F J, Kreth F W, Holtmannspotter M, Herms J,
Koch W, Tatsch K, Tonn J C.
Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic
resonance imaging in the diagnosis of recurrent gliomas.
Neurosurgery.
2005;
57
505-511
- 63
Heiss W D, Wienhard K, Wagner R, Lanfermann H, Thiel A, Herholz K, Pietrzyk U.
F-Dopa as an amino acid tracer to detect brain tumors.
J Nucl Med.
1996;
37
1180-1182
- 64
Pöpperl G.
PET (und PET/CT) - Stellenwert in der Diagnostik von primären Hirntumoren.
Der Nuklearmediziner.
2004;
27
246-254
- 65
Chen W, Delaloye S, Cloughesy T, Mischel P, Bergsneider M, Satyamurthy N, Czernin J,
Silverman D H.
FDOPA uptake kinetics in human gliomas and the relationship to histopathologic tumor
cell proliferation index Ki-67.
J Nucl Med.
2006;
47
79P
, abstract 222
- 66
Chen W, Delaloye S, Czernin J, Silverman D H, Pope W, Satayamurthy N, Geist C, Cloughesy T.
Predicting response of malignant brain tumors to bevacizumab and irinotecan therapy
with FLT and FDOPA PET.
J Nucl Med.
2006;
47 (suppl. 1)
78P-79P
, abstract 221
- 67
Becherer A, Karanikas G, Szabo M, Zettinig G, Asenbaum S, Marosi C, Henk C, Wunderbaldinger P,
Czech T, Wadsak W, Kletter K.
Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine.
Eur J Nucl Med Mol Imaging.
2003;
30
1561-1567
- 68
de Herder W W, Reijs A E, de Swart J, Kaandorp Y, Lamberts S W, Krenning E P, Kwekkeboom D J.
Comparison of iodine-123 epidepride and iodine-123 IBZM for dopamine D2 receptor imaging
in clinically non-functioning pituitary macroadenomas and macroprolactinomas.
Eur J Nucl Med.
1999;
26
46-50
- 69
Schmidt M, Jockenhovel F, Theissen P, Dietlein M, Krone W, Schicha H.
Assessment of endocrine disorders of the hypothalamic-pituitary axis by nuclear medicine
techniques.
Nuklearmedizin.
2002;
41
80-90
- 70
Lange-Nolde A, Zajic T, Slawik M, Brink I, Reincke M, Moser E, Hoegerle S.
Positron Emission Tomography with [18F]FDOPA in the imaging of parathyroid adenoma in patients with primary hyperparathyreoidism:
a pilot study.
Nuklearmedizin.
2006;
45
193-196
- 71
Neumann D R, Esselstyn C B, Maclntyre W J, Go R T, Obuchowski N A, Chen E Q, Licata A A.
Comparison of FDG-PET and sestamibi-SPECT in primary hyperparathyroidism.
J Nucl Med.
1996;
37
1809-1815
- 72
Melon P, Luxen A, Hamoir E, Meurisse M.
Fluorine-18-fluorodeoxyglucose positron emission tomography for preoperative parathyroid
imaging in primary hyperparathyroidism.
Eur J Nucl Med.
1995;
22
556-558
- 73
Beggs A D, Hain S F.
Localization of parathyroid adenomas using 11C-methionine positron emission tomography.
Nucl Med Comm.
2005;
26
133-136
- 74
Kettle A G, O'Doherty M J.
Parathyroid imaging: how good is it and how should it be done?.
Semin Nucl Med.
2006;
36
206-211
- 75
Fraker D L.
Update on the management of parathyroid tumors.
Curr Opin Oncol.
2000;
12
41-48
- 76
Papaioannou G, McHugh K.
Neuroblastoma in childhood: review and radiological findings.
Cancer Imaging.
2005;
5
116-127
- 77
Kushner B H, Yeung H W, Larson S M, Kramer K, Cheung N K.
Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18
fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up
of patients.
J Clin Oncol.
2001;
19
3397-3405
- 78
Shulkin B L, Hutchinson R J, Castle V P, Yanik G A, Shapiro B, Sisson J C.
Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose
compared with metaiodobenzylguanidine scintigraphy.
Radiology.
1996;
199
743-750
- 79
Menni F, de Lonlay P, Sevin C, Touati G, Peigne C, Barbier V, Nihoul-Fekete C, Saudubray J M,
Robert J J.
Neurologic outcomes of 90 neonates and infants with persistent hyperinsulinemic hypoglycemia.
Pediatrics.
2001;
107
476-479
- 80
Aynsley-Green A, Hussain K, Hall J, Saudubray J M, Nihoul-Fekete C, De Lonlay-Debeney P,
Brunelle F, Otonkoski T, Thornton P, Lindley K J.
Practical management of hyperinsulinism in infancy.
Arch Dis Child Fetal Neonatal Ed.
2000;
82
F98-F107
- 81
Suchi M, Thornton P S, Adzick N S, MacMullen C, Ganguly A, Stanley C A, Ruchelli E D.
Congenital hyperinsulinism: intraoperative biopsy interpretation can direct the extent
of pancreatectomy.
Am J Surg Pathol.
2004;
28
1326-1335
- 82
Otonkoski T, Nanto-Salonen K, Seppanen M, Veijola R, Huopio H, Hussain K, Tapanainen P,
Eskola O, Parkkola R, Ekstrom K, Guiot Y, Rahier J, Laakso M, Rintala R, Nuutila P,
Minn H.
Noninvasive diagnosis of focal hyperinsulinism of infancy with [18F]-DOPA positron emission tomography.
Diabetes.
2006;
55
13-18
- 83
Ribeiro M J, De Lonlay P, Delzescaux T, Boddaert N, Jaubert F, Bourgeois S, Dolle F,
Nihoul-Fekete C, Syrota A, Brunelle F.
Characterization of hyperinsulinism in infancy assessed with PET and 18F-fluoro-L-DOPA.
J Nucl Med.
2005;
46
560-566
- 84
Hardy O, Stanley C, Adzick N S, Ruchelli E, Rourke S O, Wintering N, Saffer J R, Zhunag H,
Alavi A.
Imaging of congenital hyperinsulinism with 18F-L-Fluoro-DOPA PET and correlation with histopathology.
J Nucl Med.
2006;
47
82P
, abstract 230
- 85
Mohnike K, Blankenstein O, Christesen H T, De Lonlay J, Hussain K, Koopmans K P, Minn H,
Mohnike W, Mutair A, Otonkoski T, Rahier J, Ribeiro M, Schoenle E, Fekete C N.
Proposal for a standardized protocol for 18F-DOPA-PET (PET/CT) in congenital hyperinsulinism.
Horm Res.
2006;
66
40-42
- 86
van Langevelde A, van der Molen H D, Journee-de Korver J G, Paans A M, Pauwels E K,
Vaalburg W.
Potential radiopharmaceuticals for the detection of ocular melanoma. Part III. A study
with 14C and 11C labelled tyrosine and dihydroxyphenylalanine.
Eur J Nucl Med.
1988;
14
382-387
- 87
Dimitrakopoulou-Strauss A, Strauss L G, Burger C.
Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F]fluoro-L-dopa
with 18F-FDG and (15)O-water using compartment and noncompartment analysis.
J Nucl Med.
2001;
42
248-256
- 88
Jacob T, Grahek D, Younsi N, Kerrou K, Aide N, Montravers F, Balogova S, Colombet C,
De Beco V, Talbot J N.
Positron emission tomography with [(18)F]FDOPA and [(18)F]FDG in the imaging of small cell lung carcinoma: preliminary results.
Eur J Nucl Med Mol Imaging.
2003;
30
1266-1269
- 89
Brink I, Schumacher T, Mix M, Ruhland S, Stoelben E, Digel W, Henke M, Ghanem N, Moser E,
Nitzsche E U.
Impact of [18F]FDG-PET on the primary staging of small-cell lung cancer.
Eur J Nucl Med Mol Imaging.
2004;
31
1614-1620
- 90
Talbot J N, Kerrou K, Missoum F, Grahe D, Aide N, Lumbroso J, Montravers F.
6-[F-18]fluoro-L-DOPA positron emission tomography in the imaging of Merkel cell carcinoma:
preliminary report of three cases with 2-deoxy-2-[F-18]fluoro-D-glucose positron emission
tomography or pentetreotide-(111In) SPECT data.
Mol Imaging Biol.
2005;
7
257-261
- 91 Wisser H, Knoll E. Katecholamine. In: Lehrbuch der Klinischen Chemie und Pathobiochemie/Hrsg.
Greiling H und Gressner AM. Schattauer, Stuttgart, New York 1987; 786
PD Dr. I. Brink
Abteilung Nuklearmedizin · Universitätsklinikum Freiburg
Hugstetterstr. 55
79106 Freiburg
Phone: +49/7 61/2 70 39 99
Fax: +49/7 61/2 70 39 30
Email: ingo.brink@uniklinik-freiburg.de