Subscribe to RSS
DOI: 10.1055/s-2006-956278
© Georg Thieme Verlag KG Stuttgart · New York
Neue Aspekte zur Betazelle und mögliche Therapieansätze
New aspects of pancreatic beta cell functions and their possible therapeutic applicationsPublication History
eingereicht: 30.6.2006
akzeptiert: 24.8.2006
Publication Date:
30 November 2006 (online)

Zusammenfassung
In diesem Beitrag soll am Beispiel der metabolischen Stimulus-Sekretionskopplung der pankreatischen b-Zelle gezeigt werden, wie aus der Grundlagenforschung heraus neue Strategien zur Therapie des Typ-2-Diabetes-mellitus entwickelt werden können. Die metabolische Stimulus-Sekretionskopplung setzt die Verstoffwechselung von Stimuli der Insulinsekretion voraus, die Nährstoffcharakter besitzen. Die Änderung der ATP/ADP-Ratio in der b-Zelle löst dann die Exozytose der Insulingranula aus. Das glukosephosphorylierende Enzym Glukokinase fungiert als metabolischer Glukosesensor, der Änderungen der physiologischen Glukosekonzentrationen in den b-Zellen des Pankreas und auch der Leber an den Intermediärstoffwechsel, d.h. Glykolyse, Citratzyklus und Atmungskettenphosphorylierung, koppelt und hierdurch die Insulinsekretion und den Leberstoffwechsel positiv beeinflusst. Verschiedene Pharmaunternehmen (Roche, Merck, Astra-Zeneca, Lilly) haben inzwischen erste Glukokinase-aktivierende Substanzen entwickelt und ihre Wirksamkeit in der Behandlung von Tiermodellen des Typ-2-Diabetes belegt. Diese Glukokinase-Aktivatoren verhindern, dass die Glukokinase eine katalytisch inaktive strukturelle Konformation einnimmt. Sie erhöhen die Glukose-Affinität des Enzyms und stabilisieren eine katalytisch aktive Form des Glukokinaseproteins. Hierdurch steigern Glukokinase-Aktivatoren die glukoseinduzierte Insulinsekretion und hemmen die hepatische Glukoneogenese. Glukokinaseaktivatoren stellen eine interessante Innovation für die künftige Behandlung des Typ-2-Diabetes dar, da ihre Wirkung an der b-Zelle und der Leber von Änderungen der Blutglukosekonzentrationen abhängt.
Summary
Using the metabolic stimulus-secretion coupling of pancreatic beta cells as an example, this review illustrates how new strategies in the treatment of type 2 diabetes mellitus can be developed from the results of basic research. Metabolic stimulus-secretion coupling presupposes the metabolizing of those stimuli of insulin secretion that have the properties of nutritional substances. Changes in the ATP/ADP ratio within the beta cells will then trigger the release of insulin granules from them. Glucokinase, a glucose phosphorylating enzyme, functions as a metabolic glucose sensor, which couples changes in physiological glucose concentration in the pancreatic beta cells and in the liver to the intermediary metabolism, i.e. glycolysis, the citrate cycle and respiratory-chain phosphorylation. In this way insulin secretion and hepatic metabolism are positively influenced. Several pharmaceutical companies (Roche, Merck, Astra-Zeneca, Lilly) have recently developed first examples of glucokinase-activating compounds and demonstrated in animal models their efficacy in the treatment of type 2 diabetes mellitus. These glucokinase activators prevent glucokinase from changing into a catalytically inactive structure. They also increase glucose affinity of the enzyme and stabilize a catalytically active form of glucokinase proteins. In this way glucokinase activators increase glucose-induced insulin secretion and inhibit hepatic glucogenesis. Glucokinase activators are an interesting innovation in the future treatment of type 2 diabetes, because their action on beta cells and the liver is caused by changes in blood glucose concentration.
Literatur
- 1 Agius L, Peak M. Binding and translocation of glucokinase in hepatocytes. Biochem Soc Trans. 1997; 25 145-150
- 2 Baltrusch S, Lenzen S, Okar D A, Lange A J, Tiedge M. Characterization of glucokinase-binding protein epitopes by a phage-displayed peptide library. Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel interaction partner. J Biol Chem. 2001; 276 43915-43923
- 3 Baltrusch S, Wu C, Okar D A, Tiedge M, Lange A. Interaction of GK with the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF2K/F26P2ase). Basel, Karger In Glucokinase and glycemic disease Matschinsky FM, Magnuson MA, Eds 2004: 262-274
- 4 Brocklehurst K J, Payne V A, Davies R A. et al . Stimulation of hepatocyte glucose metabolism by novel small molecule glucokinase activators. Diabetes. 2004; 53 535-541
- 5 Chen C, Hosokawa H, Bumbalo L M, Leahy J L. Regulatory effects of glucose on the catalytic activity and cellular content of glucokinase in the pancreatic beta cell. Study using cultured rat islets. J Clin Invest. 1994; 94 1616-1620
- 6 Efanov A M, Barrett D G, Brenner M B. et al . A novel glucokinase activator modulates pancreatic islet and hepatocyte function. Endocrinology. 2005; 146 3696-3701
- 7 Grimsby J, Sarabu R, Corbett W L. et al . Allosteric activators of glucokinase: potential role in diabetes therapy. Science. 2003; 301 370-373
- 8 Henquin J C. Pathways in beta-cell stimulus-secretion coupling as targets for therapeutic insulin secretagogues. Diabetes. 2004; (Suppl 3) 53 S48-58
- 9 Kamata K, Mitsuya M, Nishimura T, Eiki J, Nagata Y. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure. 2004; 12 429-438
- 10 Lenzen S. Hexose recognition mechanisms in pancreatic B-cells. Biochem Soc Trans. 1990; 18 105-107
- 11 Lenzen S, Panten U. Signal recognition by pancreatic B-cells. Biochem Pharmacol. 1988; 37 371-378
- 12 Liang Y, Jetton T L, Zimmerman E C. et al . Effects of glucose on insulin secretion, glucokinase activity, and transgene expression in transgenic mouse islets containing an upstream glucokinase promoter-human growth hormone fusion gene. Diabetes. 1994; 43 1138-1145
- 13 Massa L, Baltrusch S, Okar D A, Lange A J, Lenzen S, Tiedge M. Interaction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) with glucokinase activates glucose phosphorylation and glucose metabolism in insulin-producing cells. Diabetes. 2004; 53 1020-1029
- 14 Matschinsky F M. Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes. 1990; 39 647-652
- 15 Matschinsky F M. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes. 1996; 45 223-241
- 16 Matschinsky F M. Regulation of pancreatic beta-cell glucokinase: from basics to therapeutics. Diabetes. 2002; (Suppl 3) 51 S394-404
- 17 Matschinsky F M, Magnuson M A, Zelent D. et al . The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy. Diabetes. 2006; 55 1-12
- 18 Newgard C B, McGarry J D. Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu Rev Biochem. 1995; 64 689-719
- 19 Okar D A, Manzano A, Navarro-Sabate A, Riera L, Bartrons R, Lange A J. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci. 2001; 26 30-35
- 20 Rizzo M A, Magnuson M A, Drain P F, Piston D W. A functional link between glucokinase binding to insulin granules and conformational alterations in response to glucose and insulin. J Biol Chem. 2002; 277 34168-34175
- 21 Tiedge M, Krug U, Lenzen S. Modulation of human glucokinase intrinsic activity by SH reagents mirrors post-translational regulation of enzyme activity. Biochem Biophys Acta. 1997; 1337 175-190
- 22 Tiedge M, Richter T, Lenzen S. Importance of cysteine residues for the stability and catalytic activity of human pancreatic beta cell glucokinase. Arch Biochem Biophys. 2000; 315 251-260
- 23 Tiedge M, Steffeck H, Elsner M, Lenzen S. Metabolic regulation, activity state, and intracellular binding of glucokinase in insulin-secreting cells. Diabetes. 1999; 48 514-523
- 24 Van Schaftingen E. Short-term regulation of glucokinase. Diabetologia. 1994; 37 (Suppl 2) S43-S47
- 25 Van Schaftingen E, Veiga-da-Cunha M. Discovery and role of glucokinase regulatory protein. Basel, Karger In Glucokinase and glycemic disease - From basics to novel therapeutics Matschinsky FM, Magnuson MA, Eds 2004: 193-207
- 26 Wang H, Iynedjian P. Modulation of glucose responsiveness of insulinoma beta-cells by graded overexpression of glucokinase. Proc Natl Acad Sci U S A. 1997; 94 4372-4377
Prof. Dr. Markus Tiedge
Institut für Medizinische Biochemie und Molekularbiologie
Schillingallee 70
18057 Rostock
Phone: 0381/4945750
Fax: 0381/4945752
Email: markus.tiedge@med.uni-rostock.de