Subscribe to RSS
DOI: 10.1055/s-2006-956279
© Georg Thieme Verlag KG Stuttgart · New York
Rolle von Muskulatur und Fettgewebe in der Pathogenese des Typ-2-Diabetes
Role of muscle and fat in the pathogenesis of type 2 diabetesPublication History
eingereicht: 1.3.2006
akzeptiert: 6.7.2006
Publication Date:
30 November 2006 (online)
Zusammenfassung
In den letzten Jahren tritt der Diabetes mellitus Typ 2 nahezu epidemisch auf. Weltweit sind mehr als 170 Millionen Menschen betroffen, allein in Deutschland leben ˜ 6 Millionen Erkrankte. In der Pathogenese des Typ-2-Diabetes spielt die Kombination aus Insulinresistenz von Fettgewebe, Muskulatur und Leber mit einem zunehmenden Insulinsekretionsdefekt der pankreatischen β-Zelle eine zentrale Rolle. Dabei sind sowohl genetische Faktoren als auch Umwelteinflüsse entscheidend an der Entstehung eines Typ-2-Diabetes beteiligt, wobei die genauen pathogenetischen Mechanismen noch weitgehend unbekannt sind. Zur Beurteilung der Bedeutung von Muskulatur, Leber und Fettgewebe bei der Ausprägung des Typ-2-Diabetes hat die Generierung gewebespezifischer Insulinrezeptor-Knockout-Mausmodelle wesentlich zum Verständnis der Rolle dieser Organe der Insulinresistenz beigetragen.
Summary
In the last years type 2 diabetes has reached almost epidemic proportions. More than 170 million individuals are affected worldwide, about ˜ 6 million in Germany. In the pathogenesis of type 2 diabetes, insulin resistance in liver, fat and muscle as well as the inability of the pancreatic β-cell to fully compensate for this insulin resistance are the central pathophysiological events. Both genetic and environmental factors, such as lack of physical exercise and hypercaloric nutrition play a major role in this process, although the precise mechanisms for type 2 diabetes development remain largely unknown. In the characterization of the role of liver, adipose tissue and skeletal muscle in the pathogenesis of type 2 diabetes, tissue specific knockout mouse models have challenged our concepts of glucose homeostasis.
Literatur
- 1 Abel E D, Peroni O D, Kim J K. et al . Adipose-selective targeting of the GLUT4 gene impaires insulin action in muscle and liver. Nature. 2001; 409 729-733
- 2 Accili D, Drago J, Lee E J. et al . Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet. 1996; 12 106-109
- 3 Barzilai N, She L, Liu B Q. et al . Surgical removal of visceral fat reverses hepatic insulin resistance. Diabetes. 1999; 48 94-98
- 4 Blüher M, Paschke R. Visceral adipose tissue and metabolic syndrome. Dtsch Med Wochenschr. 2003; 128 2319-2323
- 5 Blüher M, Michael M D, Peroni O D. et al . Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell. 2002; 3 25-38
- 6 Blüher M, Kahn B B, Kahn C R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science. 2003; 299 572-574
- 7 Brüning J C, Gautam D, Burks D J. et al . Role of brain insulin receptor in control of body weight and reproduction. Science. 2000; 289 2122-2125
- 8 Brüning J C, Michael M D, Winnay J N. et al . A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell. 1998; 2 559-569
- 9 DeFronzo R A. Pathogenesis of type 2 Diabetes: Metabolic and molecular implications for identifying diabetes genes. Diabetes Rev. 1997; 5 177-269
- 10 Eckel R H, Grundy S M, Zimmet P Z. The metabolic syndrome. Lancet. 2005; 365 1415-1428
- 11 Esposito K, Marfella R, Ciotola M. et al . Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004; 92 1440-1446
- 12 Ferrannini E, Natali A, Bell P, Cavallo-Perin P, Lalic N, Mingrone G. Insulin resistance and hypersecretion in obesity. J Clin Invest. 1997; 100 1166-1173
- 13 Foley J E. Rationale and application of fatty acid oxidation inhibitors in treatment of diabetes mellitus. Diab Care. 1992; 15 773-784
- 14 Frayn K N. Visceral fat and insulin resistance - causative or correlative?. Br J Nutr. 2000; 83 S71-S77
- 15 Gu H, Marth J D, Orban P C, Mossmann H, Rajewski K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science. 1994; 265 103-106
- 16 Jacob S, Machann J, Rett K. et al . Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes. 1999; 48 1113-1119
- 17 James D E, Burleigh K M, Kraegen E W. Time dependence of insulin action in muscle and adipose tissue in the rat in vivo: An increasing response in adipose tissue with time. Diabetes. 1985; 34 1049-1054
- 18 Jansson P -A, Larsson A, Smith U, Lonnroth P. Lactate release from the subcutaneous tissue in lean and obese men. J Clin Invest. 1994; 93 240-246
- 19 Joffe B I, Panz V R, Raal F J. From lipodystrophy syndromes to diabetes mellitus. Lancet. 2001; 357 1379-1381
- 20 Kahn C R. Insulin action, diabetogenes, and the cause of type II diabetes (Banting Lecture). Diabetes. 1994; 43 1066-1084
- 21 Kashiwagi A, Verso M A, Andrews J, Vasques G, Reaven G, Foley J E. In vitro insulin resistance of human adipocytes isolated from subjects with non-insulin-dependent diabetes mellitus. J Clin Invest. 1983; 72 1246-1254
- 22 Kiens B. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev. 2006; 86 205-243
- 23 Kim J K, Zisman A, Fillmore J J. et al . Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J Clin Invest. 2001; 108 153-160
- 24 King H, Aubert R E, Hermann W H. Global burden of diabetes, 1995 - 2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998; 21 1414-1431
- 25 Klein S, Fontana L, Young V L. et al . Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004; 350 2549-2557
- 26 Kopelman P G. Obesity as a medical problem. Nature. 2000; 404 635-643
- 27 Kovacs P, Stumvoll M. Fatty acids and insulin resistance in muscle and liver. Best Pract Res Clin Endocrinol Metab. 2005; 19 625-635
- 28 Kulkarni R N, Brüning J C, Winnay J N, Postic C, Magnuson M A, Kahn C R. Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell. 1999; 96 329-339
- 29 Krssak M, Falk Petersen K, Dresner A. et al . Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia. 1999; 42 113-116
- 30 LaMonte M J, Barlow C E, Jurca R, Kampert J B, Church T S, Blair S N. Cardiorespiratory fitness is inversely associated with the incidence of metabolic syndrome: a prospective study of men and women. Circulation. 2005; 112 505-512
- 31 Martin B C, Warram J H, Krolewski A S, Bergmann R N, Soeldner J S, Kahn C R. Role of glucose and insulin resistance in development of type II diabetes mellitus: results of a 25-year follow-up study. Lancet. 1992; 340 925-929
- 32 Matthaei S, Stumvoll M, Kellerer M, Häring H U. Pathophysiology and pharmacological treatment of insulin resistance. Endocr Rev. 2000; 21 585-618
- 33 McLaughlin T, Abbasi F, Cheal K, Chu J, Lamendola C, Reaven G. Use of metabolic markers to identify overweight individuals who are insulin resistant. Ann Intern Med. 2003; 139 802-809
- 34 Meigs J B, Mittleman M A, Nathan D M. et al . Hyperinsulinemia, hyperglycemia, and impaired hemostasis: the Framingham Offspring Study. JAMA. 2000; 283 221-228
- 35 Meigs J B. Metabolic syndrome and risk for type 2 diabetes. Exp Rev Endocrinol Metab. 2006; 1 57-66
- 36 Michael M D, Kulkarni R N, Postic C. et al . Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell. 2000; 6 87-97
- 37 Mitrakou A, Kelley D, Mokan M. et al . Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med. 1992; 326 22-29
- 38 Palitzsch A D, Nusser J, Arndt H. et al., Diabetomobil-Studiengruppe . Die Prävalenz des Diabetes mellitus wird in Deutschland deutlich unterschätzt - eine bundesweite epidemiologische Studie auf der Basis einer HbA1c-Analyse. Diab Stoffw. 2000; 8 189-200
- 39 Reaven G M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988; 37 1595-1607
- 40 Reaven G M. Why Syndrome X? From Harold Himsworth to the insulin resistance syndrome. Cell Metab. 2005; 1 9-14
- 41 Stumvoll M, Goldstein B J, van Haeften T W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005; 365 1333-1346
- 42 Stumvoll M. Glukosehomöostase. Dtsch med Wochenschr. 1997; 122 235-241
- 43 Taylor S I, Cama A, Accili D. et al . Mutations in the insulin receptor gene. Endocr Rev. 1992; 13 566-595
- 44 Thorne A, Lonnqvist F, Apelman J, Hellers G, Arner P. A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord. 2002; 26 193-199
- 45 Wajchenberg B L. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocrine Reviews. 2000; 21 697-738
- 46 Zimmet P, Alberti K G, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001; 414 782-787
Prof. Dr. med. Matthias Blüher
Universität Leipzig, Medizinische Klinik und Poliklinik III
Philipp-Rosenthal-Straße 27
04103 Leipzig
Phone: 0341/9713380
Fax: 0341/9713389
Email: bluma@medizin.uni-leipzig.de