Dtsch Med Wochenschr 2006; 131: S231-S235
DOI: 10.1055/s-2006-956279
Übersicht | Review article

© Georg Thieme Verlag KG Stuttgart · New York

Rolle von Muskulatur und Fettgewebe in der Pathogenese des Typ-2-Diabetes

Role of muscle and fat in the pathogenesis of type 2 diabetesM. Blüher1 , M. Stumvoll 1
  • 1Medizinische Klinik und Poliklinik III, Universität Leipzig
Further Information

Publication History

eingereicht: 1.3.2006

akzeptiert: 6.7.2006

Publication Date:
30 November 2006 (online)

Zusammenfassung

In den letzten Jahren tritt der Diabetes mellitus Typ 2 nahezu epidemisch auf. Weltweit sind mehr als 170 Millionen Menschen betroffen, allein in Deutschland leben ˜ 6 Millionen Erkrankte. In der Pathogenese des Typ-2-Diabetes spielt die Kombination aus Insulinresistenz von Fettgewebe, Muskulatur und Leber mit einem zunehmenden Insulinsekretionsdefekt der pankreatischen β-Zelle eine zentrale Rolle. Dabei sind sowohl genetische Faktoren als auch Umwelteinflüsse entscheidend an der Entstehung eines Typ-2-Diabetes beteiligt, wobei die genauen pathogenetischen Mechanismen noch weitgehend unbekannt sind. Zur Beurteilung der Bedeutung von Muskulatur, Leber und Fettgewebe bei der Ausprägung des Typ-2-Diabetes hat die Generierung gewebespezifischer Insulinrezeptor-Knockout-Mausmodelle wesentlich zum Verständnis der Rolle dieser Organe der Insulinresistenz beigetragen.

Summary

In the last years type 2 diabetes has reached almost epidemic proportions. More than 170 million individuals are affected worldwide, about ˜ 6 million in Germany. In the pathogenesis of type 2 diabetes, insulin resistance in liver, fat and muscle as well as the inability of the pancreatic β-cell to fully compensate for this insulin resistance are the central pathophysiological events. Both genetic and environmental factors, such as lack of physical exercise and hypercaloric nutrition play a major role in this process, although the precise mechanisms for type 2 diabetes development remain largely unknown. In the characterization of the role of liver, adipose tissue and skeletal muscle in the pathogenesis of type 2 diabetes, tissue specific knockout mouse models have challenged our concepts of glucose homeostasis.

Literatur

  • 1 Abel E D, Peroni O D, Kim J K. et al . Adipose-selective targeting of the GLUT4 gene impaires insulin action in muscle and liver.  Nature. 2001;  409 729-733
  • 2 Accili D, Drago J, Lee E J. et al . Early neonatal death in mice homozygous for a null allele of the insulin receptor gene.  Nat Genet. 1996;  12 106-109
  • 3 Barzilai N, She L, Liu B Q. et al . Surgical removal of visceral fat reverses hepatic insulin resistance.  Diabetes. 1999;  48 94-98
  • 4 Blüher M, Paschke R. Visceral adipose tissue and metabolic syndrome.  Dtsch Med Wochenschr. 2003;  128 2319-2323
  • 5 Blüher M, Michael M D, Peroni O D. et al . Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance.  Dev Cell. 2002;  3 25-38
  • 6 Blüher M, Kahn B B, Kahn C R. Extended longevity in mice lacking the insulin receptor in adipose tissue.  Science. 2003;  299 572-574
  • 7 Brüning J C, Gautam D, Burks D J. et al . Role of brain insulin receptor in control of body weight and reproduction.  Science. 2000;  289 2122-2125
  • 8 Brüning J C, Michael M D, Winnay J N. et al . A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance.  Mol Cell. 1998;  2 559-569
  • 9 DeFronzo R A. Pathogenesis of type 2 Diabetes: Metabolic and molecular implications for identifying diabetes genes.  Diabetes Rev. 1997;  5 177-269
  • 10 Eckel R H, Grundy S M, Zimmet P Z. The metabolic syndrome.  Lancet. 2005;  365 1415-1428
  • 11 Esposito K, Marfella R, Ciotola M. et al . Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial.  JAMA. 2004;  92 1440-1446
  • 12 Ferrannini E, Natali A, Bell P, Cavallo-Perin P, Lalic N, Mingrone G. Insulin resistance and hypersecretion in obesity.  J Clin Invest. 1997;  100 1166-1173
  • 13 Foley J E. Rationale and application of fatty acid oxidation inhibitors in treatment of diabetes mellitus.  Diab Care. 1992;  15 773-784
  • 14 Frayn K N. Visceral fat and insulin resistance - causative or correlative?.  Br J Nutr. 2000;  83 S71-S77
  • 15 Gu H, Marth J D, Orban P C, Mossmann H, Rajewski K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting.  Science. 1994;  265 103-106
  • 16 Jacob S, Machann J, Rett K. et al . Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects.  Diabetes. 1999;  48 1113-1119
  • 17 James D E, Burleigh K M, Kraegen E W. Time dependence of insulin action in muscle and adipose tissue in the rat in vivo: An increasing response in adipose tissue with time.  Diabetes. 1985;  34 1049-1054
  • 18 Jansson P -A, Larsson A, Smith U, Lonnroth P. Lactate release from the subcutaneous tissue in lean and obese men.  J Clin Invest. 1994;  93 240-246
  • 19 Joffe B I, Panz V R, Raal F J. From lipodystrophy syndromes to diabetes mellitus.  Lancet. 2001;  357 1379-1381
  • 20 Kahn C R. Insulin action, diabetogenes, and the cause of type II diabetes (Banting Lecture).  Diabetes. 1994;  43 1066-1084
  • 21 Kashiwagi A, Verso M A, Andrews J, Vasques G, Reaven G, Foley J E. In vitro insulin resistance of human adipocytes isolated from subjects with non-insulin-dependent diabetes mellitus.  J Clin Invest. 1983;  72 1246-1254
  • 22 Kiens B. Skeletal muscle lipid metabolism in exercise and insulin resistance.  Physiol Rev. 2006;  86 205-243
  • 23 Kim J K, Zisman A, Fillmore J J. et al . Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4.  J Clin Invest. 2001;  108 153-160
  • 24 King H, Aubert R E, Hermann W H. Global burden of diabetes, 1995 - 2025: prevalence, numerical estimates, and projections.  Diabetes Care. 1998;  21 1414-1431
  • 25 Klein S, Fontana L, Young V L. et al . Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease.  N Engl J Med. 2004;  350 2549-2557
  • 26 Kopelman P G. Obesity as a medical problem.  Nature. 2000;  404 635-643
  • 27 Kovacs P, Stumvoll M. Fatty acids and insulin resistance in muscle and liver.  Best Pract Res Clin Endocrinol Metab. 2005;  19 625-635
  • 28 Kulkarni R N, Brüning J C, Winnay J N, Postic C, Magnuson M A, Kahn C R. Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes.  Cell. 1999;  96 329-339
  • 29 Krssak M, Falk Petersen K, Dresner A. et al . Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study.  Diabetologia. 1999;  42 113-116
  • 30 LaMonte M J, Barlow C E, Jurca R, Kampert J B, Church T S, Blair S N. Cardiorespiratory fitness is inversely associated with the incidence of metabolic syndrome: a prospective study of men and women.  Circulation. 2005;  112 505-512
  • 31 Martin B C, Warram J H, Krolewski A S, Bergmann R N, Soeldner J S, Kahn C R. Role of glucose and insulin resistance in development of type II diabetes mellitus: results of a 25-year follow-up study.  Lancet. 1992;  340 925-929
  • 32 Matthaei S, Stumvoll M, Kellerer M, Häring H U. Pathophysiology and pharmacological treatment of insulin resistance.  Endocr Rev. 2000;  21 585-618
  • 33 McLaughlin T, Abbasi F, Cheal K, Chu J, Lamendola C, Reaven G. Use of metabolic markers to identify overweight individuals who are insulin resistant.  Ann Intern Med. 2003;  139 802-809
  • 34 Meigs J B, Mittleman M A, Nathan D M. et al . Hyperinsulinemia, hyperglycemia, and impaired hemostasis: the Framingham Offspring Study.  JAMA. 2000;  283 221-228
  • 35 Meigs J B. Metabolic syndrome and risk for type 2 diabetes.  Exp Rev Endocrinol Metab. 2006;  1 57-66
  • 36 Michael M D, Kulkarni R N, Postic C. et al . Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction.  Mol Cell. 2000;  6 87-97
  • 37 Mitrakou A, Kelley D, Mokan M. et al . Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance.  N Engl J Med. 1992;  326 22-29
  • 38 Palitzsch A D, Nusser J, Arndt H. et al., Diabetomobil-Studiengruppe . Die Prävalenz des Diabetes mellitus wird in Deutschland deutlich unterschätzt - eine bundesweite epidemiologische Studie auf der Basis einer HbA1c-Analyse.  Diab Stoffw. 2000;  8 189-200
  • 39 Reaven G M. Banting lecture 1988. Role of insulin resistance in human disease.  Diabetes. 1988;  37 1595-1607
  • 40 Reaven G M. Why Syndrome X? From Harold Himsworth to the insulin resistance syndrome.  Cell Metab. 2005;  1 9-14
  • 41 Stumvoll M, Goldstein B J, van Haeften T W. Type 2 diabetes: principles of pathogenesis and therapy.  Lancet. 2005;  365 1333-1346
  • 42 Stumvoll M. Glukosehomöostase.  Dtsch med Wochenschr. 1997;  122 235-241
  • 43 Taylor S I, Cama A, Accili D. et al . Mutations in the insulin receptor gene.  Endocr Rev. 1992;  13 566-595
  • 44 Thorne A, Lonnqvist F, Apelman J, Hellers G, Arner P. A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding.  Int J Obes Relat Metab Disord. 2002;  26 193-199
  • 45 Wajchenberg B L. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome.  Endocrine Reviews. 2000;  21 697-738
  • 46 Zimmet P, Alberti K G, Shaw J. Global and societal implications of the diabetes epidemic.  Nature. 2001;  414 782-787

Prof. Dr. med. Matthias Blüher

Universität Leipzig, Medizinische Klinik und Poliklinik III

Philipp-Rosenthal-Straße 27

04103 Leipzig

Phone: 0341/9713380

Fax: 0341/9713389

Email: bluma@medizin.uni-leipzig.de