References and Notes
1a
Desai MC.
Lefkowitz SL.
Thadeio PF.
Longo KP.
Snider RM.
J. Med. Chem.
1992,
35:
4911
1b
Rosen T.
Seeger TF.
McLean S.
Desai MC.
Guarino KJ.
Bryce D.
Pratt K.
Heym J.
Chalabi PM.
Windels JH.
Roth RW.
J. Med. Chem.
1993,
36:
3197
For synthesis of racemic 1, see:
1c
Desai MC.
Thadeio PF.
Lefkowitz SL.
Tetrahedron Lett.
1993,
34:
5831
1d
Chandrasekhar S.
Mohanty PK.
Tetrahedron Lett.
1999,
40:
5071
1e
Yamazaki N.
Atobe M.
Kibayashi C.
Tetrahedron Lett.
2002,
43:
7979
1f
Tsuritani N.
Yamada K.-I.
Yoshikawa N.
Shibasaki M.
Chem. Lett.
2002,
276
1g
Huang P.-Q.
Liu L.-X.
Wei B.-G.
Ruan Y.-P.
Org. Lett.
2003,
5:
1927
1h
Atobe M.
Yamazaki N.
Kibayashi C.
J. Org. Chem.
2004,
69:
5595
For syntheses of ent-
1 and ent-
2, see:
1i
Lemire A.
Grenon M.
Pourashraf M.
Charette AB.
Org. Lett.
2004,
6:
3517
1j
Takahashi K.
Nakano H.
Fujita R.
Tetrahedron Lett.
2005,
46:
8927
2a Baker R, Harrison T, Swain CJ, and Williams BJ. inventors; Eur. Patent, 0528495A1.
2b
Harrison T.
Williams BJ.
Swain CJ.
Ball RG.
Bioorg. Med. Chem. Lett.
1994,
4:
2545
2c
Tomooka K.
Nakazaki A.
Nakai T.
J. Am. Chem. Soc.
2000,
122:
408
For the synthesis of racemic 2, see:
2d
Bhaskar G.
Rao BV.
Tetrahedron Lett.
2003,
44:
915
2e
Yoon Y.-J.
Joo J.-E.
Lee K.-Y.
Kim Y.-H.
Oh C.-Y.
Ham W.-H.
Tetrahedron Lett.
2005,
46:
739
2f For the synthesis of 14, see: Stadler H.
Bös M.
Heterocycles
1999,
51:
1067
For the synthesis of deprotected 14, see:
2g
Lee J.
Hoang T.
Lewis S.
Weissman SA.
Askin D.
Volante RP.
Reider PJ.
Tetrahedron Lett.
2001,
42:
6223
2h
Tsai M.-R.
Chen B.-F.
Cheng C.-C.
Chang N.-C.
J. Org. Chem.
2005,
70:
1780
3 For a review, see: Datar P.
Srivastava S.
Coutinho E.
Govil G.
Curr. Top. Med. Chem.
2004,
4:
75
4a For a review, see: Takeuchi Y.
Harayama T.
J. Synth. Org. Chem., Jpn.
2001,
59:
569
For recent syntheses of 3 and/or 4, see:
4b
Kobayashi S.
Ueno M.
Suzuki R.
Ishitani H.
Tetrahedron Lett.
1999,
40:
2175
4c
Kobayashi S.
Ueno M.
Suzuki R.
Ishitani H.
Kim H.-S.
Wataya Y.
J. Org. Chem.
1999,
64:
6833
4d
Takeuchi Y.
Abe H.
Harayama T.
Chem. Pharm. Bull.
1999,
47:
905
4e
Takeuchi Y.
Hattori M.
Abe H.
Harayama T.
Synthesis
1999,
1814
4f
Takeuchi Y.
Azuma K.
Takakura K.
Abe H.
Harayama T.
Chem. Commun.
2000,
1643
4g
Okitsu O.
Suzuki R.
Kobayashi S.
Synlett
2000,
989
4h
Taniguchi T.
Ogasawara K.
Org. Lett.
2000,
2:
3193
4i
Takeuchi Y.
Azuma K.
Takakura K.
Abe H.
Kim H.-S.
Wataya Y.
Harayama T.
Tetrahedron
2001,
57:
1213
4j
Ooi H.
Urushibara A.
Esumi T.
Iwabuchi Y.
Hatakeyama S.
Org. Lett.
2001,
3:
953
4k
Sugiura M.
Kobayashi S.
Org. Lett.
2001,
3:
477
4l
Okitsu O.
Suzuki R.
Kobayashi S.
J. Org. Chem.
2001,
66:
809
4m
Sugiura M.
Hagio H.
Hirabayashi R.
Kobayashi S.
J. Am. Chem. Soc.
2001,
123:
12510
4n
Huang P.-Q.
Wei B.-G.
Ruan Y.-P.
Synlett
2003,
1663
4o
Katoh M.
Matsune R.
Nagase H.
Honda T.
Tetrahedron Lett.
2004,
45:
6221
4p
Ashoorzadeh A.
Caprio V.
Synlett
2005,
346
4q
Takeuchi Y.
Oshige M.
Azuma K.
Abe H.
Harayama T.
Chem. Pharm. Bull.
2005,
53:
868
5a
Oshitari T.
Mandai T.
Synlett
2003,
2374
5b The enantiomeric purity of 5 was determined to be >99% ee by HPLC [CHIRALCEL OD-H; hexane-i-PrOH = 9:1; λ = 220 nm; flow rate: 0.8 mL/min; t
R(5) = 6.36 min; t
R(ent-5) = 8.71 min].
5c Compound 5 was also prepared from (S)-(+)-phenylglycine. See: Denis J.-N., Correa A., Greene A. E.; J. Org. Chem.; 1991, 56: 6939; Greene and co-workers reported therein that 5 was obtained in moderate yield with complete retention of enantiomeric purity by the addition of the crude Swern-oxidation product of N-Boc phenylglycinol to a large excess of vinylmagnesium bromide. Bhaskar et al. adopted this method for the preparation of compound 5 in their synthesis of 2,
[2d]
whose enantiomeric purity can be estimated below 50% ee in comparison with our own data. Ham and co-workers also synthesized 2 via an oxazoline derivative starting from N-benzoyl phenylglycinol.
[2e]
The optical rotation of 2 was in agreement with that reported in ref. 2d. These observations clearly imply that special care is required for employing easily racemizable phenylglycinal derivatives as a source of chiron approach.
6
Oshitari T.
Akagi R.
Mandai T.
Synthesis
2004,
1325
For preparation of 1,2-amino alcohol arrays from vinyl epoxides or 1,3-amino alcohol arrays from 4-pentene-1,3-diol carbonates via the intramolecular reaction of a nitrogen-containing nucleophile with a π-allylpalladium complex, see:
7a
Trost BM.
Sudhakar AR.
J. Am. Chem. Soc.
1987,
109:
3792
7b
Trost BM.
Sudhakar AR.
J. Am. Chem. Soc.
1988,
110:
7933
7c
Bando T.
Harayama H.
Fukazawa Y.
Shiro M.
Fugami K.
Tanaka S.
Tamaru Y.
J. Org. Chem.
1994,
59:
1465
For preparation of 1,2-diamine arrays from 5-vinyloxazol-idinones via intermolecular reaction of a nitrogen-containing nucleophile with a π-allylpalladium complex, see:
8a
Cook GR.
Shanker PS.
Pararajasingham K.
Angew. Chem. Int. Ed.
1999,
38:
110
8b
Cook GR.
Sankaranarayanan S.
Org. Lett.
2001,
3:
3531
8c
Cook GR.
Yu H.
Sankaranarayanan S.
Shanker PS.
J. Am. Chem. Soc.
2003,
125:
5115
9 In our preliminary investigation, DMSO was proven to be more effective solvent than toluene, THF and DMF. In addition, we found that DBU, soluble in above solvents, was much superior to other bases such as NaH, t-BuOK and Cs2CO3.
10a
Dunn PJ.
Häner R.
Rapoport H.
J. Org. Chem.
1990,
55:
5017
10b
Seo R.
Ishizuka T.
Abdel-Aziz AA.-M.
Kunieda T.
Tetrahedron Lett.
2001,
42:
6353
10c
Katahira T.
Ishizuka T.
Matsunaga H.
Kunieda T.
Tetrahedron Lett.
2001,
42:
6319
11 The reaction under heating at refluxing temperature in a flask overnight provided 4-phenyl-4-(3-aminopropion-amido)-3-tosylamino-1-butene as the sole product.
12 After removal of ethylenediamine in vacuo, a mixture of the mono-N-Ts-protected 1,2-diamine and 2-imidazolidone was afforded, which was subjected to the next step without further purification.
For recent reviews, see:
13a
Breit B.
Seiche W.
Synthesis
2001,
1
13b
Breit B.
Acc. Chem. Res.
2003,
36:
264
For syntheses of piperidines through Rh-catalyzed hydroformylation, see:
13c
Ojima I.
Tzamarioudaki M.
Eguchi M.
J. Org. Chem.
1995,
60:
7078
13d
Ojima I.
Iula DM.
Tzamarioudaki M.
Tetrahedron Lett.
1998,
39:
4599
13e
Ojima I.
Vidal ES.
J. Org. Chem.
1998,
63:
7999
{[3,3′-di-tert-Butyl-2′-(diphenoxymethoxy)-5,5′-dimethoxybiphenyl-2-yl]oxy}dibenzo[d,f][1,3]dioxepine.
14a Billig E, Abatjoglou AG, and Bryant DR. inventors; U. S. Patent, 4668651.
14b Billig E, Abatjoglou AG, and Bryant DR. inventors; U. S. Patent, 4769498.
14c
Cuny GD.
Buchwald SL.
J. Am. Chem. Soc.
1993,
115:
2066
15 Five-membered N-Boc-enamide (2%) and five-membered N-Boc-aminals (5%) were also isolated after the treatment with CSA. N-Ts-enamide and N-Ts-aminals were not obtained at all.
16 Compound 10: colorless foam; [α]D
22 -206.0 (c = 1.00, CHCl3). 1H NMR (CDCl3): δ = 1.21 (br s, 6.3 H), 1.41 (br s, 2.7 H), 1.77-1.85 (m, 1 H), 1.89-2.10 (br m, 1 H), 2.45 (s, 3 H), 3.87 (m, 1 H), 3.97 (d, J = 10.1 Hz, 1 H), 4.71 (br, 0.3 H), 4.78 (br, 0.7 H), 4.98 (br, 0.7 H), 5.15 (br, 0.3 H), 6.89-7.22 (m, 2 H), 7.28-7.38 (m, 5 H), 7.78 (m, 2 H). 13C NMR (CDCl3): δ = 21.6, 25.5, 26.1, 27.9, 28.2, 49.8, 57.5, 58.9, 77.2, 81.3, 81.5, 101.0, 126.2, 126.6, 127.0, 128.0, 128.5, 129.9, 137.3, 137.7, 138.1, 143.7, 152.1. Anal. Calcd for C23H28N2O4S: C, 64.46; H, 6.59; N, 6.54. Found: C, 64.37; H, 6.71; N, 6.54.
17 In the absence of TBAI, the N-alkylation was very slow at 0 °C. Compound 12, however, was afforded in 81% yield at r.t. in 5 h with the significant loss of enantiomeric purity (77% ee), which was probably caused by the elimination-addition sequence of the N-2-methoxybenzyl-tert-butyl carbamoyl group.
18 Compound 12: colorless foam; [α]D
21 -105.2 (c = 1.32, CHCl3). 1H NMR (CDCl3): δ = 1.19-1.70 (m, 21 H), 1.85 (br m, 1 H), 3.14 (br m, 1 H), 3.33 (br m, 1 H), 3.65 (s, 3 H), 3.75 (br m, 0.45 H), 3.99-4.10 (m, 1.65 H), 4.25 (br m, 0.45 H), 4.50 (br m, 0.45 H), 5.45 (br s, 0.9 H), 5.64 (br s, 0.1 H), 6.71 (m, 1 H), 6.86 (m, 1 H), 7.03 (m, 1 H), 7.12 (m, 1 H), 7.37-7.25 (m, 5 H). 13C NMR (CDCl3): δ = 22.4, 24.6, 28.2, 41.0, 41.6, 42.1, 55.1, 56.2, 57.0, 57.5, 77.2, 79.6, 109.8, 120.2, 126.4, 127.0, 128.0, 128.4, 140.2, 141.2, 155.9. Anal. Calcd for C29H40N2O5: C, 70.13; H, 8.12; N, 5.64. Found: C, 69.90; H, 8.28; N, 5.54. The enantiomeric purity of 12 was determined to be >99% ee by HPLC [CHIRALCEL OD; hexane-i-PrOH = 30:1; λ = 220 nm; flow rate: 1.0 mL/min; t
R(12) = 6.8 min; t
R(ent-12) = 11.0 min].
19 (+)-CP-99,994 (1): 1H NMR (free base, CDCl3): δ = 1.40 (br d, J = 13.2 Hz, 1 H), 1.60 (m, 1 H), 1.76 (br s, 2 H), 1.93 (m, 1 H), 2.14 (br d, J = 13.1 Hz, 1 H), 2.76-2.83 (m, 2 H), 3.27 (m, 1 H), 3.41 (d, J = 13.8 Hz, 1 H), 3.44 (s, 3 H), 3.67 (d, J = 13.8 Hz, 1 H), 3.88 (d, J = 2.1 Hz, 1 H), 6.68 (br d, J = 8.2 Hz, 1 H), 6.80 (br t, J = 7.3 Hz, 1 H), 6.97 (dd, J = 1.5, 7.3 Hz, 1 H), 7.15 (dt, J = 1.5, 8.2 Hz, 1 H), 7.20-7.31 (m, 5 H). 13C NMR (free base, CDCl3): δ = 20.4, 28.2, 46.7, 47.8, 54.7, 54.8, 64.0, 109.8, 120.0, 126.3, 126.5, 127.8, 128.2, 129.6, 142.4, 157.6.
20 Protection of C3-hydroxyl group as a benzoate was of choice for the subsequent hydroformylation.
21 Compound 13: colorless viscous oil; [α]D
24 -152.3 (c = 1.02, CHCl3). 1H NMR (CDCl3): δ = 1.25 (br s, 6 H), 1.40-1.55 (br m, 3 H), 2.05-2.25 (m, 1 H), 2.40 (m, 1 H), 4.83 (br m, 0.33 H), 4.93 (br m, 0.67 H), 5.40 (br m, 0.33 H), 5.46-5.63 (m, 1.67 H), 7.00-7.35 (m, 6 H), 7.40 (m, 2 H), 7.55 (m, 1 H), 7.90 (m, 2 H). 13C NMR (CDCl3): δ = 23.7, 24.0, 27.9, 28.2, 56.0, 57.3, 69.2, 81.3, 100.4, 126.1, 126.4, 127.5, 127.6, 128.0, 128.35, 128.38, 129.69, 129.71, 129.8, 133.1, 138.6, 152.3, 165.6. Anal. Calcd for C23H25NO4: C, 72.80; H, 6.64; N, 3.69. Found: C, 72.76; H, 6.84; N, 3.66.
22 Five-membered aminals (4%) were also isolated.
23 Compound 14: colorless viscous oil; [α]D
22 +56.7 (c = 1.3, CHCl3) {Lit.
[1g]
[α]D
15 +53.77 (c = 1.0, CHCl3); Lit.
[2d]
[α]D
25 +38.30 (c = 1.92, CHCl3)}. 1H NMR (CDCl3): δ = 1.37 (s, 9 H), 1.54-1.62 (m, 1 H), 1.69 (m, 1 H), 1.76-1.87 (m, 3 H), 3.04 (m, 1 H), 4.01 (dd, J = 5.8, 12.8 Hz, 1 H), 4.09 (m, 1 H), 5.32 (d, J = 5.8 Hz, 1 H), 7.27 (m, 1 H), 7.37-7.32 (m, 2 H), 7.45 (m, 2 H). 13C NMR (CDCl3): δ = 23.1, 27.7, 28.3, 39.5, 59.3, 70.1, 79.9, 127.2, 128.4, 138.5, 155.4. Anal. Calcd for C16H23NO3: C, 69.29; H, 8.36; N, 5.05. Found: C, 69.21; H, 8.59; N, 4.77. The enantiomeric purity of 14 was determined to be >99% ee by HPLC [CHIRALCEL OJ-H; hexane-i-PrOH = 9:1; λ = 220 nm; flow rate: 1.0 mL/min; t
R(14) = 4.80 min; t
R(ent-14) = 5.75 min].
24 Compound 15: colorless oil; [α]D
23 +43.3 (c = 1.60, CHCl3) {Lit.
[1g]
[α]D
28 +36.90 (c = 1.0, CHCl3)}. 1H NMR (CDCl3): δ = 1.46 (s, 9 H), 1.58-1.76 (m, 2 H), 1.94-2.05 (m, 2 H), 2.77 (ddd, J = 3.3, 13.4, 13.4 Hz, 1 H), 3.88 (m, 1 H), 3.95 (dd, J = 3.3, 13.4 Hz, 1 H), 4.71 (d, J = 12.5 Hz, 1 H), 4.75 (d, J = 12.5 Hz, 1 H), 5.70 (br s, 1 H), 7.25-7.36 (m, 3 H), 7.54 (br s, 1 H), 7.56 (br s, 1 H), 7.71 (br s, 2 H), 7.78 (br s, 1 H). 13C NMR (CDCl3): δ = 24.2, 25.8, 28.4, 39.2, 55.4, 69.1, 78.7, 80.1, 121.4 (m), 123.3 (q, J = 272 Hz), 127.0, 127.2, 128.28, 128.32, 131.6 (q, J = 32.9 Hz), 138.0, 141.0, 155.3. The enantiomeric purity of 15 was determined to be >99% ee by HPLC [CHIRALPAK IA; hexane-i-PrOH = 30:1; λ = 220 nm; flow rate: 0.3 mL/min; t
R(15)= 14.1 min; t
R(ent-
15) = 16.6 min)].
25 L-733,060 (2): 1H NMR (free base, CDCl3): δ = 1.53 (m, 1 H), 1.66-1.75 (m, 1 H), 1.88 (m, 1 H), 2.22 (br d, J = 14.0 Hz, 1 H), 2.85 (ddd, J = 3.1, 12.5, 12.5 Hz, 1 H), 3.29 (m, 1 H), 3.68 (br m, 1 H), 3.85 (d, J = 1.2 Hz, 1 H), 4.13 (d, J = 12.5 Hz, 1 H), 4.52 (d, J = 12.5 Hz, 1 H), 7.25-7.29 (m, 1 H), 7.30-7.35 (m, 2 H), 7.35-7.39 (m, 2 H), 7.44 (br s, 2 H), 7.69 (br s, 1 H). 13C NMR (free base, CDCl3): δ = 20.5, 28.4, 47.1, 64.2, 70.0, 77.3, 121.1 (hept, J = 4.1 Hz), 123.2 (q, J = 271 Hz), 126.7, 127.0, 127.4 (m), 128.1, 131.2 (q, J = 32.9 Hz), 141.2, 141.9.