ABSTRACT
Hepatocellular carcinoma (HCC) is a leading cause of death among cirrhotic patients and has become a major health problem in developed countries. There is an elemental understanding of the genes and signaling pathways involved in the initiation and progression of this neoplasm. The current hypothesis of the HCC cell origin includes both somatic cells (hepatocytes) and stem cells/progenitor cells. Unlike that in other malignancies such as breast, brain, or hematopoietic cancers, the implication of cancer stem cells in HCC pathogenesis is not yet supported by consistent data. Analysis of somatic genetic alterations and gene expression profiles in HCC samples has provided relevant information on the genes involved in hepatocarcinogenesis, pinpointing a seminal molecular classification of the disease. Nonetheless, a comprehensive genomic analysis of HCC samples using high-resolution platforms in precisely annotated HCCs is clearly needed. Recent data have identified different signaling pathways in liver carcinogenesis (e.g., Wnt-βCatenin, Hedgehog, tyrosine kinase receptor-related pathways), providing an important potential source of novel molecular targets for new therapies. This review summarizes the most relevant information regarding structural and functional alterations in HCC and describes some of the key signaling pathways implicated in hepatocarcinogenesis.
KEYWORDS
Liver cancer - genomics - signaling pathway
REFERENCES
-
1
Fattovich G, Stroffolini T, Zagni I, Donato F.
Hepatocellular carcinoma in cirrhosis: incidence and risk factors.
Gastroenterology.
2004;
127(suppl 1)
S35-S50
-
2
El-Serag H B.
Hepatocellular carcinoma: recent trends in the United States.
Gastroenterology.
2004;
127(suppl 1)
S27-S34
-
3
Parkin D M, Bray F, Ferlay J, Pisani P.
Global cancer statistics, 2002.
CA Cancer J Clin.
2005;
55
74-108
-
4
Llovet J M, Burroughs A, Bruix J.
Hepatocellular carcinoma.
Lancet.
2003;
362
1907-1917
-
5
Llovet J M, Bruix J.
Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival.
Hepatology.
2003;
37
429-442
-
6
Bruix J, Boix L, Sala M, Llovet J M.
Focus on hepatocellular carcinoma.
Cancer Cell.
2004;
5
215-219
-
7
Farazi P A, DePinho R A.
Hepatocellular carcinoma pathogenesis: from genes to environment.
Nat Rev Cancer.
2006;
6
674-687
-
8
Jordan C T, Guzman M, Noble M L.
Cancer stem cells.
N Engl J Med.
2006;
355
1253-1261
-
9
Clevers H.
Stem cells, asymmetric division and cancer.
Nat Genet.
2005;
37
1027-1028
-
10
Mishra L, Shetty K, Tang Y, Stuart A, Byers S W.
The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer.
Oncogene.
2005;
24
5775-5789
-
11
Morrison S J, Kimble J.
Asymmetric and symmetric stem-cell divisions in development and cancer.
Nature.
2006;
441
1068-1074
-
12
Wicha M S, Liu S, Dontu G.
Cancer stem cells: an old idea-a paradigm shift.
Cancer Res.
2006;
66
1883-1890
discussion 95-96
-
13 Pecorino L. Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics. Oxford, UK; Oxford Press 2005
-
14
Aractingi S, Kanitakis J, Euvrard S et al..
Skin carcinoma arising from donor cells in a kidney transplant recipient.
Cancer Res.
2005;
65
1755-1760
-
15
Duelli D, Lazebnik Y.
Cell fusion: a hidden enemy?.
Cancer Cell.
2003;
3
445-448
-
16
Bergsmedh A, Szeles A, Henriksson M et al..
Horizontal transfer of oncogenes by uptake of apoptotic bodies.
Proc Natl Acad Sci USA.
2001;
98
6407-6411
-
17
Holmgren L, Bergsmedh A, Spetz A L.
Horizontal transfer of DNA by the uptake of apoptotic bodies.
Vox Sang.
2002;
83(suppl 1)
305-306
-
18
Fausto N, Campbell J S.
The role of hepatocytes and oval cells in liver regeneration and repopulation.
Mech Dev.
2003;
120
117-130
-
19
Sell S.
Heterogeneity and plasticity of hepatocyte lineage cells.
Hepatology.
2001;
33
738-750
-
20
Shafritz D A, Dabeva M D.
Liver stem cells and model systems for liver repopulation.
J Hepatol.
2002;
36
552-564
-
21
Fausto N.
Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells.
Hepatology.
2004;
39
1477-1487
-
22
Fausto N, Campbell J S, Riehle K J.
Liver regeneration.
Hepatology.
2006;
43(suppl 1)
S45-S53
-
23
Thorgeirsson S S.
Hepatic stem cells in liver regeneration.
FASEB J.
1996;
10
1249-1256
-
24
Paku S, Schnur J, Nagy P, Thorgeirsson S S.
Origin and structural evolution of the early proliferating oval cells in rat liver.
Am J Pathol.
2001;
158
1313-1323
-
25
Knight B, Yeoh G C, Husk K L et al..
Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice.
J Exp Med.
2000;
192
1809-1818
-
26
Petersen B E, Grossbard B, Hatch H, Pi L, Deng J, Scott E W.
Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers.
Hepatology.
2003;
37
632-640
-
27
Thorgeirsson S S, Grisham J W.
Hematopoietic cells as hepatocyte stem cells: a critical review of the evidence.
Hepatology.
2006;
43
2-8
-
28
Fuchs E, Tumbar T, Guasch G.
Socializing with the neighbors: stem cells and their niche.
Cell.
2004;
116
769-778
-
29
Roskams T.
Liver stem cells and their implication in hepatocellular and cholangiocarcinoma.
Oncogene.
2006;
25
3818-3822
-
30
Thorgeirsson S S, Grisham J W.
Molecular pathogenesis of human hepatocellular carcinoma.
Nat Genet.
2002;
31
339-346
-
31
Wilkens L, Bredt M, Flemming P, Klempnauer J, Heinrich Kreipe H.
Differentiation of multicentric origin from intra-organ metastatic spread of hepatocellular carcinomas by comparative genomic hybridization.
J Pathol.
2000;
192
43-51
-
32
Wong Q W, Wong N, Lai P B, To K F, Wong N.
Clonal relationship of tumor nodules in hepatocellular carcinoma: a hierarchical clustering analysis of comparative genomic hybridization data.
Hum Pathol.
2005;
36
893-898
-
33
Kallioniemi A, Kallioniemi O P, Sudar D et al..
Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors.
Science.
1992;
258
818-821
-
34
Bentz M, Plesch A, Stilgenbauer S, Dohner H, Lichter P.
Minimal sizes of deletions detected by comparative genomic hybridization.
Genes Chromosomes Cancer.
1998;
21
172-175
-
35
Speicher M R, Carter N P.
The new cytogenetics: blurring the boundaries with molecular biology.
Nat Rev Genet.
2005;
6
782-792
-
36
Moinzadeh P, Breuhahn K, Stutzer H, Schirmacher P.
Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade: results of an explorative CGH meta-analysis.
Br J Cancer.
2005;
92
935-941
-
37
Guan X Y, Fang Y, Sham J S et al..
Recurrent chromosome alterations in hepatocellular carcinoma detected by comparative genomic hybridization.
Genes Chromosomes Cancer.
2000;
29
110-116
-
38
Huang J, Sheng H H, Shen T et al..
Correlation between genomic DNA copy number alterations and transcriptional expression in hepatitis B virus-associated hepatocellular carcinoma.
FEBS Lett.
2006;
580
3571-3581
-
39
Kusano N, Okita K, Shirahashi H et al..
Chromosomal imbalances detected by comparative genomic hybridization are associated with outcome of patients with hepatocellular carcinoma.
Cancer.
2002;
94
746-751
-
40
Kusano N, Shiraishi K, Kubo K, Oga A, Okita K, Sasaki K.
Genetic aberrations detected by comparative genomic hybridization in hepatocellular carcinomas: their relationship to clinicopathological features.
Hepatology.
1999;
29
1858-1862
-
41
Lin Y W, Sheu J C, Huang G T et al..
Chromosomal abnormality in hepatocellular carcinoma by comparative genomic hybridisation in Taiwan.
Eur J Cancer.
1999;
35
652-658
-
42
Marchio A, Meddeb M, Pineau P et al..
Recurrent chromosomal abnormalities in hepatocellular carcinoma detected by comparative genomic hybridization.
Genes Chromosomes Cancer.
1997;
18
59-65
-
43
Pang A, Ng I O, Fan S T, Kwong Y L.
Clinicopathologic significance of genetic alterations in hepatocellular carcinoma.
Cancer Genet Cytogenet.
2003;
146
8-15
-
44
Patil M A, Gutgemann I, Zhang J et al..
Array-based comparative genomic hybridization reveals recurrent chromosomal aberrations and Jab1 as a potential target for 8q gain in hepatocellular carcinoma.
Carcinogenesis.
2005;
26
2050-2057
-
45
Sy S M, Wong N, Lai P B, To K F, Johnson P J.
Regional over-representations on chromosomes 1q, 3q and 7q in the progression of hepatitis B virus-related hepatocellular carcinoma.
Mod Pathol.
2005;
18
686-692
-
46
Tornillo L, Carafa V, Richter J et al..
Marked genetic similarities between hepatitis B virus-positive and hepatitis C virus-positive hepatocellular carcinomas.
J Pathol.
2000;
192
307-312
-
47
Wong N, Lai P, Lee S W et al..
Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis: relationship to disease stage, tumor size, and cirrhosis.
Am J Pathol.
1999;
154
37-43
-
48
Wong N, Lai P, Pang E et al..
Genomic aberrations in human hepatocellular carcinomas of differing etiologies.
Clin Cancer Res.
2000;
6
4000-4009
-
49
Katoh H, Shibata T, Kokubu A et al..
Genetic profile of hepatocellular carcinoma revealed by array-based comparative genomic hybridization: identification of genetic indicators to predict patient outcome.
J Hepatol.
2005;
43
863-874
-
50
Midorikawa Y, Yamamoto S, Ishikawa S et al..
Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays.
Oncogene.
2006;
25
5581-5590
-
51
Steinemann D, Skawran B, Becker T et al..
Assessment of differentiation and progression of hepatic tumors using array-based comparative genomic hybridization.
Clin Gastroenterol Hepatol.
2006;
4
1283-1291
-
52
Adler A S, Lin M, Horlings H, Nuyten D S, van de Vijver M J, Chang H Y.
Genetic regulators of large-scale transcriptional signatures in cancer.
Nat Genet.
2006;
38
421-430
-
53
Raidl M, Pirker C, Schulte-Hermann R et al..
Multiple chromosomal abnormalities in human liver (pre)neoplasia.
J Hepatol.
2004;
40
660-668
-
54
Buendia M A.
Genetics of hepatocellular carcinoma.
Semin Cancer Biol.
2000;
10
185-200
-
55
Jiang X, Hitchcock A, Bryan E J et al..
Microsatellite analysis of endometriosis reveals loss of heterozygosity at candidate ovarian tumor suppressor gene loci.
Cancer Res.
1996;
56
3534-3539
-
56
Loukola A, Salovaara R, Kristo P et al..
Microsatellite instability in adenomas as a marker for hereditary nonpolyposis colorectal cancer.
Am J Pathol.
1999;
155
1849-1853
-
57
Ho M K, Lee J M, Chan C K, Ng I O.
Allelic alterations in nontumorous liver tissues and corresponding hepatocellular carcinomas from Chinese patients.
Hum Pathol.
2003;
34
699-705
-
58
Koo S H, Ihm C H, Kwon K C, Lee J S, Park J W, Kim J W.
Microsatellite alterations in hepatocellular carcinoma and intrahepatic cholangiocarcinoma.
Cancer Genet Cytogenet.
2003;
146
139-144
-
59
Nagai H, Pineau P, Tiollais P, Buendia M A, Dejean A.
Comprehensive allelotyping of human hepatocellular carcinoma.
Oncogene.
1997;
14
2927-2933
-
60
Jou Y S, Lee C S, Chang Y H et al..
Clustering of minimal deleted regions reveals distinct genetic pathways of human hepatocellular carcinoma.
Cancer Res.
2004;
64
3030-3036
-
61
Chang J, Kim N G, Piao Z et al..
Assessment of chromosomal losses and gains in hepatocellular carcinoma.
Cancer Lett.
2002;
182
193-202
-
62
Laurent-Puig P, Legoix P, Bluteau O et al..
Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis.
Gastroenterology.
2001;
120
1763-1773
-
63
Chaubert P, Gayer R, Zimmermann A et al..
Germ-line mutations of the p16INK4(MTS1) gene occur in a subset of patients with hepatocellular carcinoma.
Hepatology.
1997;
25
1376-1381
-
64
Sherr C J, McCormick F.
The RB and p53 pathways in cancer.
Cancer Cell.
2002;
2
103-112
-
65
Hupp T R, Lane D P, Ball K L.
Strategies for manipulating the p53 pathway in the treatment of human cancer.
Biochem J.
2000;
352
1-17
-
66
Anzola M, Saiz A, Cuevas N, Lopez-Martinez M, Martinez de Pancorbo M A, Burgos J J.
High levels of p53 protein expression do not correlate with p53 mutations in hepatocellular carcinoma.
J Viral Hepat.
2004;
11
502-510
-
67
Boix-Ferrero J, Pellin A, Blesa R, Adrados M, Llombart-Bosch A.
Absence of p53 gene mutations in hepatocarcinomas from a Mediterranean area of Spain: a study of 129 archival tumour samples.
Virchows Arch.
1999;
434
497-501
-
68
Bressac B, Kew M, Wands J, Ozturk M.
Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa.
Nature.
1991;
350
429-431
-
69
Buetow K H, Sheffield V C, Zhu M et al..
Low frequency of p53 mutations observed in a diverse collection of primary hepatocellular carcinomas.
Proc Natl Acad Sci USA.
1992;
89
9622-9626
-
70
Challen C, Guo K, Collier J D, Cavanagh D, Bassendine M F.
Infrequent point mutations in codons 12 and 61 of ras oncogenes in human hepatocellular carcinomas.
J Hepatol.
1992;
14
342-346
-
71
Coursaget P, Depril N, Chabaud M et al..
High prevalence of mutations at codon 249 of the p53 gene in hepatocellular carcinomas from Senegal.
Br J Cancer.
1993;
67
1395-1397
-
72
De Benedetti V M, Welsh J A, Yu M C, Bennett W P.
p53 mutations in hepatocellular carcinoma related to oral contraceptive use.
Carcinogenesis.
1996;
17
145-149
-
73
Diamantis I D, McGandy C, Chen T J, Liaw Y F, Gudat F, Bianchi L.
A new mutational hot-spot in the p53 gene in human hepatocellular carcinoma.
J Hepatol.
1994;
20
553-556
-
74
Elmileik H, Paterson A C, Kew M C.
Beta-catenin mutations and expression, 249serine p53 tumor suppressor gene mutation, and hepatitis B virus infection in southern African Blacks with hepatocellular carcinoma.
J Surg Oncol.
2005;
91
258-263
-
75
Hayashi H, Sugio K, Matsumata T et al..
The mutation of codon 249 in the p53 gene is not specific in Japanese hepatocellular carcinoma.
Liver.
1993;
13
279-281
-
76
Hollstein M C, Wild C P, Bleicher F et al..
p53 mutations and aflatoxin B1 exposure in hepatocellular carcinoma patients from Thailand.
Int J Cancer.
1993;
53
51-55
-
77
Honda K, Sbisa E, Tullo A et al..
p53 mutation is a poor prognostic indicator for survival in patients with hepatocellular carcinoma undergoing surgical tumour ablation.
Br J Cancer.
1998;
77
776-782
-
78
Hosono S, Chou M J, Lee C S, Shih C.
Infrequent mutation of p53 gene in hepatitis B virus positive primary hepatocellular carcinomas.
Oncogene.
1993;
8
491-496
-
79
Hsia C C, Nakashima Y, Thorgeirsson S S et al..
Correlation of immunohistochemical staining and mutations of p53 in human hepatocellular carcinoma.
Oncol Rep.
2000;
7
353-356
-
80
Jackson P E, Qian G S, Friesen M D et al..
Specific p53 mutations detected in plasma and tumors of hepatocellular carcinoma patients by electrospray ionization mass spectrometry.
Cancer Res.
2001;
61
33-35
-
81
Karachristos A, Liloglou T, Field J K, Deligiorgi E, Kouskouni E, Spandidos D A.
Microsatellite instability and p53 mutations in hepatocellular carcinoma.
Mol Cell Biol Res Commun.
1999;
2
155-161
-
82
Katiyar S, Dash B C, Thakur V, Guptan R C, Sarin S K, Das B C.
P53 tumor suppressor gene mutations in hepatocellular carcinoma patients in India.
Cancer.
2000;
88
1565-1573
-
83
Kubicka S, Trautwein C, Schrem H, Tillmann H, Manns M.
Low incidence of p53 mutations in European hepatocellular carcinomas with heterogeneous mutation as a rare event.
J Hepatol.
1995;
23
412-419
-
84
Lunn R M, Zhang Y J, Wang L Y et al..
p53 mutations, chronic hepatitis B virus infection, and aflatoxin exposure in hepatocellular carcinoma in Taiwan.
Cancer Res.
1997;
57
3471-3477
-
85
Murakami Y, Hayashi K, Hirohashi S, Sekiya T.
Aberrations of the tumor suppressor p53 and retinoblastoma genes in human hepatocellular carcinomas.
Cancer Res.
1991;
51
5520-5525
-
86
Ng I O, Srivastava G, Chung L P, Tsang S W, Ng M M.
Overexpression and point mutations of p53 tumor suppressor gene in hepatocellular carcinomas in Hong Kong Chinese people.
Cancer.
1994;
74
30-37
-
87
Nishida N, Fukuda Y, Kokuryu H et al..
Role and mutational heterogeneity of the p53 gene in hepatocellular carcinoma.
Cancer Res.
1993;
53
368-372
-
88
Nose H, Imazeki F, Ohto M, Omata M.
p53 gene mutations and 17p allelic deletions in hepatocellular carcinoma from Japan.
Cancer.
1993;
72
355-360
-
89
Ozturk M.
p53 mutation in hepatocellular carcinoma after aflatoxin exposure.
Lancet.
1991;
338
1356-1359
-
90
Peng X M, Peng W W, Yao J L.
Codon 249 mutations of p53 gene in development of hepatocellular carcinoma.
World J Gastroenterol.
1998;
4
125-127
-
91
Scorsone K A, Zhou Y Z, Butel J S, Slagle B L.
p53 mutations cluster at codon 249 in hepatitis B virus-positive hepatocellular carcinomas from China.
Cancer Res.
1992;
52
1635-1638
-
92
Sheu J C, Huang G T, Lee P H et al..
Mutation of p53 gene in hepatocellular carcinoma in Taiwan.
Cancer Res.
1992;
52
6098-6100
-
93
Shi C Y, Phang T W, Wee A et al..
Mutations of the tumour suppressor gene p53 in colorectal and hepatocellular carcinomas.
Ann Acad Med Singapore.
1995;
24
204-210
-
94
Shimizu Y, Zhu J J, Han F, Ishikawa T, Oda H.
Different frequencies of p53 codon-249 hot-spot mutations in hepatocellular carcinomas in Jiang-su province of China.
Int J Cancer.
1999;
82
187-190
-
95
Sugo H, Takamori S, Kojima K, Beppu T, Futagawa S.
The significance of p53 mutations as an indicator of the biological behavior of recurrent hepatocellular carcinomas.
Surg Today.
1999;
29
849-855
-
96
Tanaka S, Toh Y, Adachi E, Matsumata T, Mori R, Sugimachi K.
Tumor progression in hepatocellular carcinoma may be mediated by p53 mutation.
Cancer Res.
1993;
53
2884-2887
-
97
Tannapfel A, Busse C, Weinans L et al..
INK4a-ARF alterations and p53 mutations in hepatocellular carcinomas.
Oncogene.
2001;
20
7104-7109
-
98
Vautier G, Bomford A B, Portmann B C, Metivier E, Williams R, Ryder S D.
p53 mutations in British patients with hepatocellular carcinoma: clustering in genetic hemochromatosis.
Gastroenterology.
1999;
117
154-160
-
99
Yang M, Zhou H, Kong R Y et al..
Mutations at codon 249 of p53 gene in human hepatocellular carcinomas from Tongan, China.
Mutat Res.
1997;
381
25-29
-
100
Smela M E, Hamm M L, Henderson P T, Harris C M, Harris T M, Essigmann J M.
The aflatoxin B(1) formamidopyrimidine adduct plays a major role in causing the types of mutations observed in human hepatocellular carcinoma.
Proc Natl Acad Sci USA.
2002;
99
6655-6660
-
101
Hayashi H, Sugio K, Matsumata T, Adachi E, Takenaka K, Sugimachi K.
The clinical significance of p53 gene mutation in hepatocellular carcinomas from Japan.
Hepatology.
1995;
22
1702-1707
-
102
Farazi P A, Glickman J, Horner J, Depinho R A.
Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression.
Cancer Res.
2006;
66
4766-4773
-
103
Lemmer E R, Friedman S L, Llovet J M.
Molecular diagnosis of chronic liver disease and hepatocellular carcinoma: the potential of gene expression profiling.
Semin Liver Dis.
2006;
26
373-384
-
104
Heller M J.
DNA microarray technology: devices, systems, and applications.
Annu Rev Biomed Eng.
2002;
4
129-153
-
105
Chen X, Cheung S T, So S et al..
Gene expression patterns in human liver cancers.
Mol Biol Cell.
2002;
13
1929-1939
-
106
Xu X R, Huang J, Xu Z G et al..
Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver.
Proc Natl Acad Sci USA.
2001;
98
15089-15094
-
107
Segal E, Friedman N, Kaminski N, Regev A, Koller D.
From signatures to models: understanding cancer using microarrays.
Nat Genet.
2005;
37(suppl)
S38-S45
-
108
Wong Y F, Selvanayagam Z E, Wei N et al..
Expression genomics of cervical cancer: molecular classification and prediction of radiotherapy response by DNA microarray.
Clin Cancer Res.
2003;
9
5486-5492
-
109
Lee J S, Chu I S, Heo J et al..
Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling.
Hepatology.
2004;
40
667-676
-
110
Greenbaum D, Baruch A, Hayrapetian L et al..
Chemical approaches for functionally probing the proteome.
Mol Cell Proteomics.
2002;
1
60-68
-
111
International Human Genome Sequencing Consortium .
Finishing the euchromatic sequence of the human genome.
Nature.
2004;
431
931-945
-
112
Michiels S, Koscielny S, Hill C.
Prediction of cancer outcome with microarrays: a multiple random validation strategy.
Lancet.
2005;
365
488-492
-
113
Thorgeirsson S S, Lee J S, Grisham J W.
Molecular prognostication of liver cancer: end of the beginning.
J Hepatol.
2006;
44
798-805
-
114
Lee J S, Heo J, Libbrecht L et al..
A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells.
Nat Med.
2006;
12
410-416
-
115
Ye Q H, Qin L X, Forgues M et al..
Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning.
Nat Med.
2003;
9
416-423
-
116
Iizuka N, Oka M, Yamada-Okabe H et al..
Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection.
Lancet.
2003;
361
923-929
-
117
Kurokawa Y, Matoba R, Takemasa I et al..
Molecular-based prediction of early recurrence in hepatocellular carcinoma.
J Hepatol.
2004;
41
284-291
-
118
Takeo S, Arai H, Kusano N et al..
Examination of oncogene amplification by genomic DNA microarray in hepatocellular carcinomas: comparison with comparative genomic hybridization analysis.
Cancer Genet Cytogenet.
2001;
130
127-132
-
119
Anders R A, Yerian L M, Tretiakova M et al..
cDNA microarray analysis of macroregenerative and dysplastic nodules in end-stage hepatitis C virus-induced cirrhosis.
Am J Pathol.
2003;
162
991-1000
-
120
Armengol C, Boix L, Bachs O et al..
p27(Kip1) is an independent predictor of recurrence after surgical resection in patients with small hepatocellular carcinoma.
J Hepatol.
2003;
38
591-597
-
121
Boix L, Rosa J L, Ventura F et al..
c-met mRNA overexpression in human hepatocellular carcinoma.
Hepatology.
1994;
19
88-91
-
122
de La Coste A, Romagnolo B, Billuart P et al..
Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas.
Proc Natl Acad Sci USA.
1998;
95
8847-8851
-
123
De Souza A T, Hankins G R, Washington M K, Orton T C, Jirtle R L.
M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity.
Nat Genet.
1995;
11
447-449
-
124
Delpuech O, Trabut J B, Carnot F, Feuillard J, Brechot C, Kremsdorf D.
Identification, using cDNA macroarray analysis, of distinct gene expression profiles associated with pathological and virological features of hepatocellular carcinoma.
Oncogene.
2002;
21
2926-2937
-
125
Efimova E A, Glanemann M, Liu L et al..
Effects of human hepatocyte growth factor on the proliferation of human hepatocytes and hepatocellular carcinoma cell lines.
Eur Surg Res.
2004;
36
300-307
-
126
Fields A C, Cotsonis G, Sexton D, Santoianni R, Cohen C.
Survivin expression in hepatocellular carcinoma: correlation with proliferation, prognostic parameters, and outcome.
Mod Pathol.
2004;
17
1378-1385
-
127
Goldenberg D, Ayesh S, Schneider T et al..
Analysis of differentially expressed genes in hepatocellular carcinoma using cDNA arrays.
Mol Carcinog.
2002;
33
113-124
-
128
Guo X Z, Friess H, Di Mola F F et al..
KAI1, a new metastasis suppressor gene, is reduced in metastatic hepatocellular carcinoma.
Hepatology.
1998;
28
1481-1488
-
129
Hanafusa T, Yumoto Y, Nouso K et al..
Reduced expression of insulin-like growth factor binding protein-3 and its promoter hypermethylation in human hepatocellular carcinoma.
Cancer Lett.
2002;
176
149-158
-
130
Heinze T, Jonas S, Karsten A, Neuhaus P.
Determination of the oncogenes p53 and C-erb B2 in the tumour cytosols of advanced hepatocellular carcinoma (HCC) and correlation to survival time.
Anticancer Res.
1999;
19
2501-2503
-
131
Higashitsuji H, Higashitsuji H, Nagao T et al..
A novel protein overexpressed in hepatoma accelerates export of NF-kappa B from the nucleus and inhibits p53-dependent apoptosis.
Cancer Cell.
2002;
2
335-346
-
132
Iizuka N, Oka M, Yamada-Okabe H et al..
Differential gene expression in distinct virologic types of hepatocellular carcinoma: association with liver cirrhosis.
Oncogene.
2003;
22
3007-3014
-
133
Ikeguchi M, Ueta T, Yamane Y, Hirooka Y, Kaibara N.
Inducible nitric oxide synthase and survivin messenger RNA expression in hepatocellular carcinoma.
Clin Cancer Res.
2002;
8
3131-3136
-
134
Ito Y, Takeda T, Sakon M et al..
Expression and clinical significance of erb-B receptor family in hepatocellular carcinoma.
Br J Cancer.
2001;
84
1377-1383
-
135
Kanai Y, Ushijima S, Hui A M et al..
The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas.
Int J Cancer.
1997;
71
355-359
-
136
Li X, Nong Z, Ekstrom C et al..
Disrupted IGF2 promoter control by silencing of promoter P1 in human hepatocellular carcinoma.
Cancer Res.
1997;
57
2048-2054
-
137
Matsuda Y, Ichida T, Matsuzawa J, Sugimura K, Asakura H.
p16(INK4) is inactivated by extensive CpG methylation in human hepatocellular carcinoma.
Gastroenterology.
1999;
116
394-400
-
138
Mise M, Arii S, Higashituji H et al..
Clinical significance of vascular endothelial growth factor and basic fibroblast growth factor gene expression in liver tumor.
Hepatology.
1996;
23
455-464
-
139
Miura H, Miyazaki T, Kuroda M et al..
Increased expression of vascular endothelial growth factor in human hepatocellular carcinoma.
J Hepatol.
1997;
27
854-861
-
140
Motoo Y, Sawabu N, Nakanuma Y.
Expression of epidermal growth factor and fibroblast growth factor in human hepatocellular carcinoma: an immunohistochemical study.
Liver.
1991;
11
272-277
-
141
Oka Y, Waterland R A, Killian J K et al..
M6P/IGF2R tumor suppressor gene mutated in hepatocellular carcinomas in Japan.
Hepatology.
2002;
35
1153-1163
-
142
Okabe H, Satoh S, Kato T et al..
Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression.
Cancer Res.
2001;
61
2129-2137
-
143
Paradis V, Bieche I, Dargere D et al..
Molecular profiling of hepatocellular carcinomas (HCC) using a large-scale real-time RT-PCR approach: determination of a molecular diagnostic index.
Am J Pathol.
2003;
163
733-741
-
144
Prange W, Breuhahn K, Fischer F et al..
Beta-catenin accumulation in the progression of human hepatocarcinogenesis correlates with loss of E-cadherin and accumulation of p53, but not with expression of conventional WNT-1 target genes.
J Pathol.
2003;
201
250-259
-
145
Qin L X, Tang Z Y.
The prognostic molecular markers in hepatocellular carcinoma.
World J Gastroenterol.
2002;
8
385-392
-
146
Shen L, Fang J, Qiu D et al..
Correlation between DNA methylation and pathological changes in human hepatocellular carcinoma.
Hepatogastroenterology.
1998;
45
1753-1759
-
147
Song B C, Chung Y H, Kim J A et al..
Transforming growth factor-beta1 as a useful serologic marker of small hepatocellular carcinoma.
Cancer.
2002;
94
175-180
-
148
Tanaka S, Mori M, Sakamoto Y, Makuuchi M, Sugimachi K, Wands J R.
Biologic significance of angiopoietin-2 expression in human hepatocellular carcinoma.
J Clin Invest.
1999;
103
341-345
-
149
Taniguchi K, Roberts L R, Aderca I N et al..
Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas.
Oncogene.
2002;
21
4863-4871
-
150
Torimura T, Ueno T, Kin M et al..
Overexpression of angiopoietin-1 and angiopoietin-2 in hepatocellular carcinoma.
J Hepatol.
2004;
40
799-807
-
151
Ueki T, Fujimoto J, Suzuki T, Yamamoto H, Okamoto E.
Expression of hepatocyte growth factor and its receptor c-met proto-oncogene in hepatocellular carcinoma.
Hepatology.
1997;
25
862-866
-
152
Veikkola T, Alitalo K.
VEGFs, receptors and angiogenesis.
Semin Cancer Biol.
1999;
9
211-220
-
153
Wang W, Yang L Y, Huang G W et al..
Genomic analysis reveals RhoC as a potential marker in hepatocellular carcinoma with poor prognosis.
Br J Cancer.
2004;
90
2349-2355
-
154
Wang Y, Wu M C, Sham J S, Zhang W, Wu W Q, Guan X Y.
Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma: a broad survey using high-throughput tissue microarray.
Cancer.
2002;
95
2346-2352
-
155
Wei Y, Van Nhieu J T, Prigent S, Srivatanakul P, Tiollais P, Buendia M A.
Altered expression of E-cadherin in hepatocellular carcinoma: correlations with genetic alterations, beta-catenin expression, and clinical features.
Hepatology.
2002;
36
692-701
-
156
Yakicier M C, Irmak M B, Romano A, Kew M, Ozturk M.
Smad2 and Smad4 gene mutations in hepatocellular carcinoma.
Oncogene.
1999;
18
4879-4883
-
157
Yamada T, De Souza A T, Finkelstein S, Jirtle R L.
Loss of the gene encoding mannose 6-phosphate/insulin-like growth factor II receptor is an early event in liver carcinogenesis.
Proc Natl Acad Sci USA.
1997;
94
10351-10355
-
158
Yao Y J, Ping X L, Zhang H et al..
PTEN/MMAC1 mutations in hepatocellular carcinomas.
Oncogene.
1999;
18
3181-3185
-
159
Yoshiji H, Kuriyama S, Yoshii J et al..
Halting the interaction between vascular endothelial growth factor and its receptors attenuates liver carcinogenesis in mice.
Hepatology.
2004;
39
1517-1524
-
160
Zhang X, Xu H J, Murakami Y et al..
Deletions of chromosome 13q, mutations in retinoblastoma 1, and retinoblastoma protein state in human hepatocellular carcinoma.
Cancer Res.
1994;
54
4177-4182
-
161
Zhang L, Yu Q, He J, Zha X.
Study of the PTEN gene expression and FAK phosphorylation in human hepatocarcinoma tissues and cell lines.
Mol Cell Biochem.
2004;
262
25-33
-
162
Llovet J M, Chen Y, Wurmbach E et al..
A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV-cirrhosis.
Gastroenterology.
2006;
131
1758-1767
-
163
Lepourcelet M, Chen Y N, France D S et al..
Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex.
Cancer Cell.
2004;
5
91-102
-
164
Bell H S, Ryan K M.
Intracellular signalling and cancer: complex pathways lead to multiple targets.
Eur J Cancer.
2005;
41
206-215
-
165
Ben-Ze'ev A, Geiger B.
Differential molecular interactions of beta-catenin and plakoglobin in adhesion, signaling and cancer.
Curr Opin Cell Biol.
1998;
10
629-639
-
166
Huber A H, Weis W I.
The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin.
Cell.
2001;
105
391-402
-
167
Oloumi A, McPhee T, Dedhar S.
Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase.
Biochim Biophys Acta.
2004;
1691
1-15
-
168
Giles R H, van Es J H, Clevers H.
Caught up in a Wnt storm: Wnt signaling in cancer.
Biochim Biophys Acta.
2003;
1653
1-24
-
169
Sparks A B, Morin P J, Vogelstein B, Kinzler K W.
Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.
Cancer Res.
1998;
58
1130-1134
-
170
Huang H, Fujii H, Sankila A et al..
Beta-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection.
Am J Pathol.
1999;
155
1795-1801
-
171
Ishizaki Y, Ikeda S, Fujimori M et al..
Immunohistochemical analysis and mutational analyses of beta-catenin, Axin family and APC genes in hepatocellular carcinomas.
Int J Oncol.
2004;
24
1077-1083
-
172
Legoix P, Bluteau O, Bayer J et al..
Beta-catenin mutations in hepatocellular carcinoma correlate with a low rate of loss of heterozygosity.
Oncogene.
1999;
18
4044-4046
-
173
Cui J, Zhou X, Liu Y, Tang Z.
Mutation and overexpression of the beta-catenin gene may play an important role in primary hepatocellular carcinoma among Chinese people.
J Cancer Res Clin Oncol.
2001;
127
577-581
-
174
Cui J, Zhou X, Liu Y, Tang Z, Romeih M.
Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes.
J Gastroenterol Hepatol.
2003;
18
280-287
-
175
Hsu H C, Jeng Y M, Mao T L, Chu J S, Lai P L, Peng S Y.
Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis.
Am J Pathol.
2000;
157
763-770
-
176
Kondo Y, Kanai Y, Sakamoto M et al..
Beta-catenin accumulation and mutation of exon 3 of the beta-catenin gene in hepatocellular carcinoma.
Jpn J Cancer Res.
1999;
90
1301-1309
-
177
Miyoshi Y, Iwao K, Nagasawa Y et al..
Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3.
Cancer Res.
1998;
58
2524-2527
-
178
Nhieu J T, Renard C A, Wei Y, Cherqui D, Zafrani E S, Buendia M A.
Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation.
Am J Pathol.
1999;
155
703-710
-
179
Park J Y, Park W S, Nam S W et al..
Mutations of beta-catenin and AXIN I genes are a late event in human hepatocellular carcinogenesis.
Liver Int.
2005;
25
70-76
-
180
Terris B, Pineau P, Bregeaud L et al..
Close correlation between beta-catenin gene alterations and nuclear accumulation of the protein in human hepatocellular carcinomas.
Oncogene.
1999;
18
6583-6588
-
181
Zucman-Rossi J, Jeannot E, Nhieu J T et al..
Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC.
Hepatology.
2006;
43
515-524
-
182
Satoh S, Daigo Y, Furukawa Y et al..
AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1.
Nat Genet.
2000;
24
245-250
-
183
Breuhahn K, Longerich T, Schirmacher P.
Dysregulation of growth factor signaling in human hepatocellular carcinoma.
Oncogene.
2006;
25
3787-3800
-
184
Merle P, de la Monte S, Kim M et al..
Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma.
Gastroenterology.
2004;
127
1110-1122
-
185
Inagawa S, Itabashi M, Adachi S et al..
Expression and prognostic roles of beta-catenin in hepatocellular carcinoma: correlation with tumor progression and postoperative survival.
Clin Cancer Res.
2002;
8
450-456
-
186
Joo M, Lee H K, Kang Y K.
Expression of beta-catenin in hepatocellular carcinoma in relation to tumor cell proliferation and cyclin D1 expression.
J Korean Med Sci.
2003;
18
211-217
-
187
Lees C, Howie S, Sartor R B, Satsangi J.
The hedgehog signalling pathway in the gastrointestinal tract: implications for development, homeostasis, and disease.
Gastroenterology.
2005;
129
1696-1710
-
188
Taipale J, Beachy P A.
The Hedgehog and Wnt signalling pathways in cancer.
Nature.
2001;
411
349-354
-
189
Berman D M, Karhadkar S S, Hallahan A R et al..
Medulloblastoma growth inhibition by hedgehog pathway blockade.
Science.
2002;
297
1559-1561
-
190
Berman D M, Karhadkar S S, Maitra A et al..
Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours.
Nature.
2003;
425
846-851
-
191
Karhadkar S S, Bova G S, Abdallah N et al..
Hedgehog signalling in prostate regeneration, neoplasia and metastasis.
Nature.
2004;
431
707-712
-
192
Thayer S P, di Magliano M P, Heiser P W et al..
Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis.
Nature.
2003;
425
851-856
-
193
Watkins D N, Berman D M, Baylin S B.
Hedgehog signaling: progenitor phenotype in small-cell lung cancer.
Cell Cycle.
2003;
2
196-198
-
194
Watkins D N, Berman D M, Burkholder S G, Wang B, Beachy P A, Baylin S B.
Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer.
Nature.
2003;
422
313-317
-
195
Huang S, He J, Zhang X et al..
Activation of the hedgehog pathway in human hepatocellular carcinomas.
Carcinogenesis.
2006;
27
1334-1340
-
196
Sicklick J K, Li Y X, Jayaraman A et al..
Dysregulation of the hedgehog pathway in human hepatocarcinogenesis.
Carcinogenesis.
2006;
27
748-757
-
197
Osipo C, Miele L.
Hedgehog signaling in hepatocellular carcinoma: novel therapeutic strategy targeting hedgehog signaling in HCC.
Cancer Biol Ther.
2006;
5
238-239
-
198
Sordella R, Bell D W, Haber D A, Settleman J.
Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways.
Science.
2004;
305
1163-1167
-
199
Paez J G, Janne P A, Lee J C et al..
EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy.
Science.
2004;
304
1497-1500
-
200
Baylin S B, Ohm J E.
Epigenetic gene silencing in cancer: a mechanism for early oncogenic pathway addiction?.
Nat Rev Cancer.
2006;
6
107-116
-
201
Baselga J, Tripathy D, Mendelsohn J et al..
Phase II study of weekly intravenous trastuzumab (Herceptin) in patients with HER2/neu-overexpressing metastatic breast cancer.
Semin Oncol.
1999;
26(suppl 12)
78-83
-
202
Cobleigh M A, Vogel C L, Tripathy D et al..
Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease.
J Clin Oncol.
1999;
17
2639-2648
-
203
Nakopoulou L, Stefanaki K, Filaktopoulos D, Giannopoulou I.
C-erb-B-2 oncoprotein and epidermal growth factor receptor in human hepatocellular carcinoma: an immunohistochemical study.
Histol Histopathol.
1994;
9
677-682
-
204
Xian Z H, Zhang S H, Cong W M, Wu W Q, Wu M C.
Overexpression/amplification of HER-2/neu is uncommon in hepatocellular carcinoma.
J Clin Pathol.
2005;
58
500-503
-
205
Lee S C, Lim S G, Soo R et al..
Lack of somatic mutations in EGFR tyrosine kinase domain in hepatocellular and nasopharyngeal carcinoma.
Pharmacogenet Genomics.
2006;
16
73-74
-
206
Su M C, Lien H C, Jeng Y M.
Absence of epidermal growth factor receptor exon 18-21 mutation in hepatocellular carcinoma.
Cancer Lett.
2005;
224
117-121
-
207
Huether A, Hopfner M, Sutter A P, Schuppan D, Scherubl H.
Erlotinib induces cell cycle arrest and apoptosis in hepatocellular cancer cells and enhances chemosensitivity towards cytostatics.
J Hepatol.
2005;
43
661-669
-
208
Huether A, Hopfner M, Baradari V, Schuppan D, Scherubl H.
EGFR blockade by cetuximab alone or as combination therapy for growth control of hepatocellular cancer.
Biochem Pharmacol.
2005;
70
1568-1578
-
209
Schiffer E, Housset C, Cacheux W et al..
Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis.
Hepatology.
2005;
41
307-314
-
210
Philip P A, Mahoney M R, Allmer C et al..
Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer.
J Clin Oncol.
2005;
23
6657-6663
-
211
Dragan Y, Teeguarden J, Campbell H, Hsia S, Pitot H.
The quantitation of altered hepatic foci during multistage hepatocarcinogenesis in the rat: transforming growth factor alpha expression as a marker for the stage of progression.
Cancer Lett.
1995;
93
73-83
-
212
Petit A M, Rak J, Hung M C et al..
Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors.
Am J Pathol.
1997;
151
1523-1530
-
213
Yamaguchi R, Yano H, Iemura A, Ogasawara S, Haramaki M, Kojiro M.
Expression of vascular endothelial growth factor in human hepatocellular carcinoma.
Hepatology.
1998;
28
68-77
-
214
Raskopf E, Dzienisowicz C, Hilbert T et al..
Effective angiostatic treatment in a murine metastatic and orthotopic hepatoma model.
Hepatology.
2005;
41
1233-1240
-
215
Yu H, Rohan T.
Role of the insulin-like growth factor family in cancer development and progression.
J Natl Cancer Inst.
2000;
92
1472-1489
-
216
Yun K.
A new marker for rhabdomyosarcoma: insulin-like growth factor II.
Lab Invest.
1992;
67
653-664
-
217
Su Q, Liu Y F, Zhang J F, Zhang S X, Li D F, Yang J J.
Expression of insulin-like growth factor II in hepatitis B, cirrhosis and hepatocellular carcinoma: its relationship with hepatitis B virus antigen expression.
Hepatology.
1994;
20
788-799
-
218
Nardone G, Romano M, Calabro A et al..
Activation of fetal promoters of insulinlike growth factors II gene in hepatitis C virus-related chronic hepatitis, cirrhosis, and hepatocellular carcinoma.
Hepatology.
1996;
23
1304-1312
-
219
Selden C, Farnaud S, Ding S F, Habib N, Foster C, Hodgson H J.
Expression of hepatocyte growth factor mRNA, and c-met mRNA (hepatocyte growth factor receptor) in human liver tumours.
J Hepatol.
1994;
21
227-234
-
220
Ueki T, Fujimoto J, Suzuki T, Yamamoto H, Okamoto E.
Expression of hepatocyte growth factor and its receptor, the c-met proto-oncogene, in hepatocellular carcinoma.
Hepatology.
1997;
25
619-623
-
221
Hynes N E, Lane H A.
ERBB receptors and cancer: the complexity of targeted inhibitors.
Nat Rev Cancer.
2005;
5
341-354
-
222
Grunewald K, Lyons J, Frohlich A et al..
High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas.
Int J Cancer.
1989;
43
1037-1041
-
223
Ogata N, Kamimura T, Asakura H.
Point mutation, allelic loss and increased methylation of c-Ha-ras gene in human hepatocellular carcinoma.
Hepatology.
1991;
13
31-37
-
224
Tsuda H, Hirohashi S, Shimosato Y, Ino Y, Yoshida T, Terada M.
Low incidence of point mutation of c-Ki-ras and N-ras oncogenes in human hepatocellular carcinoma.
Jpn J Cancer Res.
1989;
80
196-199
-
225
Weihrauch M, Benick M, Lehner G et al..
High prevalence of K-ras-2 mutations in hepatocellular carcinomas in workers exposed to vinyl chloride.
Int Arch Occup Environ Health.
2001;
74
405-410
-
226
Weihrauch M, Benicke M, Lehnert G, Wittekind C, Wrbitzky R, Tannapfel A.
Frequent k-ras-2 mutations and p16(INK4A)methylation in hepatocellular carcinomas in workers exposed to vinyl chloride.
Br J Cancer.
2001;
84
982-989
-
227
Sansal I, Sellers W R.
The biology and clinical relevance of the PTEN tumor suppressor pathway.
J Clin Oncol.
2004;
22
2954-2963
-
228
Risinger J I, Hayes A K, Berchuck A, Barrett J C.
PTEN/MMAC1 mutations in endometrial cancers.
Cancer Res.
1997;
57
4736-4738
-
229
Chiariello E, Roz L, Albarosa R, Magnani I, Finocchiaro G.
PTEN/MMAC1 mutations in primary glioblastomas and short-term cultures of malignant gliomas.
Oncogene.
1998;
16
541-545
-
230
Hashimoto K, Mori N, Tamesa T et al..
Analysis of DNA copy number aberrations in hepatitis C virus-associated hepatocellular carcinomas by conventional CGH and array CGH.
Mod Pathol.
2004;
17
617-622
-
231
Fujiwara Y, Hoon D S, Yamada T et al..
PTEN/MMAC1 mutation and frequent loss of heterozygosity identified in chromosome 10q in a subset of hepatocellular carcinomas.
Jpn J Cancer Res.
2000;
91
287-292
-
232
Wan X W, Wang H Y, Jiang M et al..
[PTEN expression and its significance in human primary hepatocellular carcinoma].
Zhonghua Gan Zang Bing Za Zhi.
2003;
11
490-492
-
233
Yeh K T, Chang J G, Chen Y J et al..
Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in hepatocellular carcinoma.
Cancer Invest.
2000;
18
123-129
-
234
Whang Y E, Wu X, Suzuki H et al..
Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression.
Proc Natl Acad Sci USA.
1998;
95
5246-5250
-
235
Samuels Y, Wang Z, Bardelli A et al..
High frequency of mutations of the PIK3CA gene in human cancers.
Science.
2004;
304
554
-
236
Bader A G, Kang S, Vogt P K.
Cancer-specific mutations in PIK3CA are oncogenic in vivo.
Proc Natl Acad Sci USA.
2006;
103
1475-1479
-
237
Kang S, Bader A G, Vogt P K.
Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic.
Proc Natl Acad Sci USA.
2005;
102
802-807
-
238
Shayesteh L, Lu Y, Kuo W L et al..
PIK3CA is implicated as an oncogene in ovarian cancer.
Nat Genet.
1999;
21
99-102
-
239
Lee J W, Soung Y H, Kim S Y et al..
PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.
Oncogene.
2005;
24
1477-1480
-
240
Tanaka Y, Kanai F, Tada M et al..
Absence of PIK3CA hotspot mutations in hepatocellular carcinoma in Japanese patients.
Oncogene.
2006;
25
2950-2952
-
241
Nakanishi K, Sakamoto M, Yamasaki S, Todo S, Hirohashi S.
Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma.
Cancer.
2005;
103
307-312
-
242
Bjornsti M A, Houghton P J.
The TOR pathway: a target for cancer therapy.
Nat Rev Cancer.
2004;
4
335-348
-
243
Vignot S, Faivre S, Aguirre D, Raymond E.
mTOR-targeted therapy of cancer with rapamycin derivatives.
Ann Oncol.
2005;
16
525-537
-
244
Sahin F, Kannangai R, Adegbola O, Wang J, Su G, Torbenson M.
mTOR and P70 S6 kinase expression in primary liver neoplasms.
Clin Cancer Res.
2004;
10
8421-8425
-
245
Schumacher G, Oidtmann M, Rueggeberg A et al..
Sirolimus inhibits growth of human hepatoma cells alone or combined with tacrolimus, while tacrolimus promotes cell growth.
World J Gastroenterol.
2005;
11
1420-1425
-
246
Sarbassov D D, Guertin D A, Ali S M, Sabatini D M.
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex.
Science.
2005;
307
1098-1101
Josep M LlovetM.D.
Division of Liver Diseases, Mount Sinai School of Medicine
1425 Madison Avenue, 11F-70, Box 1123, New York, NY 10029